This Addendum Number Four supersedes and/or supplements all portions of the Contract Documents with which it conflicts. Proposers must acknowledge receipt of this Addendum Four on page 28 of the RFP “Proposal Acknowledgement Letter.”

Peggi Watkins
Contract Administrator
Addendum Number Four includes a modification to the following RFP Document issued June 26, 2017. This modification is deemed necessary by the City and County of Denver.

PART II TECHNICAL PROVISIONS

VOLUME 1: TECHNICAL SPECIFICATIONS
Please refer to the attached Technical Specifications – Addendum 1

VOLUME 2: ISSUED FOR CONSTRUCTION (IFC) DRAWINGS
Please refer to the attached Drawings – Addendum 1
ADDENDUM #1

ENGINEER'S SUPPLEMENTAL INSTRUCTIONS TO CONTRACT DOCUMENTS ENTITLED:
Central Utility Plant Chiller Replacement
Issued for Construction Package
February 24, 2017

PREPARED FOR: Denver International Airport

CONSULTANT: Burns & McDonnell
9785 Maroon Circle, Suite 400
Centennial, CO 80112
P: 303-721-9292

Drawings and specifications for the above noted project and the work covered thereby are herein modified as follows, and except as set forth herein, otherwise remain unchanged and in full force and effect.

ENGINEER’S SUPPLEMENTAL INSTRUCTIONS:

The descriptions of changes below include several revised contract documents listed under more than one description. These documents each include information for multiple design changes.

The descriptions of changes below include changes to drawings and specifications:

- **MECHANICAL**
 - M1.03: General sheet notes updated.
 - M3.02: Sheet Keynotes updated.
 - M4.01: Sheet Keynotes updated.
 - M4.05: General sheet notes updated, System connection to chiller circuits updated.
 - M5.05: Detail 1/M5.05 General detail notes updated.
 - M6.02: Notes updated.
 - MD1.02: Sheet keynotes updated.
 - SECTION 011400 APPENDIX A: schematics updated to reflect existing slide gates and dividers.
 - SECTION 230513 COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT: New spec addition.
 - SECTION 230548.13 VIBRATION CONTROLS FOR HVAC: 3.5.A - The inertia base schedule excludes vertical mounted turbine centrifugal pumps.
 - SECTION 232123 HYDRONIC PUMPS: 2.2.B – Includes field-assembled vertical turbine pumps.
 - SECTION 232113 HYDRONIC PIPING: 3.3.B / 3.3.D - Pipe schedule clarification that standard weight pipe is acceptable for NPS piping 2.5” and larger. 1.2.4 / 2.1.3 / 3.3.F – “Blowdown” removed. Only “drain” piping included in specs.
 - SECTION 236416 CENTRIFUGAL WATER CHILLERS: 2.3.D. Removed “open-drive” motor as it is not required.
 - SECTION 230719 PIPING INSULATION: Section updated to exclude ASJ and Metal Jackets and specifies PVC jackets.

- **ELECTRICAL**
 - Updated DIV 26 specs with clarifications related to bidder questions.

END OF ADDENDUM #1
INDEX AND CERTIFICATION PAGE

SPECIFICATION INDEX

<table>
<thead>
<tr>
<th>DIVISION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General Requirements</td>
</tr>
<tr>
<td>23</td>
<td>Heating, Ventilating, and Air Conditioning</td>
</tr>
<tr>
<td>26</td>
<td>Electrical</td>
</tr>
</tbody>
</table>

CERTIFICATIONS
The chillers will be installed with marine water-boxes to allow for ease of annual maintenance. Each chiller will have the needed tube pull clearances. Aisle clearance will be accounted for, in each of the chiller bays to allow for chiller additions. Valves will be located such that the chillers can be isolated for shut down and maintenance. All major mechanical and electrical equipment will be located to allow for manufacturer recommended clearances. Means of lifting the water boxes and other normal maintenance items will be evaluated during detailed design.

To maintain continuous cooling operations to the airport, detailed construction phasing will need to be considered and coordinated with the operations staff.

The installation of the six new chillers in chiller Bays 1, 2, and 3 is proposed occur in 5 phases as follows:

- **Phase 1:** Preparation of Chemical Storage Room for Switchgear C relocation and Switchgear A refeed to serve Chiller 1. Demolition of RTU-1.
- **Phase 2:** Relocation of Switchgear C equipment into Chemical Storage Room. Installation of new HVAC unit for Chemical Storage Room.
- **Phase 2A:** Replacement of cooling tower cell control valves, and addition of CW pump tap in East header. Replacement of remaining cooling tower cell control valves.
- **Phase 3:** Removal of existing chiller C-3, CW pump P-23 and CW pump P-31, P-32, and P-33 in west sump. Installation of new chillers C-3A & C-3B in Bay 3 and new CW pumps P-1A, P-1B, P-2A, and P-2B in west sump. Expansion of existing electrical room. Replacement of bay 1, 2, and 3 CS isolation valves during outage for CW pump cut-in West header.
- **Phase 4:** Removal of existing chiller C-2, and CW pump P-22. Installation of new chillers C-2A & C-2B in Bay 2.
- **Phase 5:** Removal of existing chiller C-1, CW pump P-21, and CW pump P-34 and 35 in East sump. Removal of existing RTU-2. Installation of new chillers C-1A & C-1B in Bay 3, and new CW pumps P-3A, P-3B, P-4A, and P-4B in East Sump. Rework of Chiller 4A/4B CS header. Installation of new RTU-1. Installation of CHW P-12.

Phases 3, 4, and 5 include the removal of existing chiller and installation of 2 new chillers in a particular Bay. The work in these phases must be complete with fully operation chillers before preceding to next phase. The chiller capacity is during each phase is described in the table below.
Phase 1: Preparation of Chemical Storage Room for Switchgear C relocation.

1. Phase 1 work can begin immediately upon contract award (10/3/17) and will be completed prior to relocation of Switchgear C from existing electrical room to Chemical Storage Room.

2. Any remaining equipment in Chemical Storage Room to be removed. Any structural, electrical, and mechanical work needed to prepare and modify Chemical Storage room to accommodate relocation of Switchgear C shall be performed in Phase 1.

3. After all chemical equipment in Chemical Storage room is removed, MAU-1 and ducting for the Chemical storage room is to be demolished and removed.

4. Water heater in boiler room shall be demolished and supply and return piping to Chemical Storage Room shall be removed, after the water treatment system is fully relocated and operational and the emergency eyewash/shower is decommissioned in the Chemical Storage room.

5. During this time, switchgear A feed for Chiller 3 will be refed to serve Chiller 1. This may cause an outage, which will need to be coordinated with DEN.

6. During this time, contractor shall demolish RTU-1 and associated piping back to RTU-2.

Table 1: Chilled Water Capacity During Phasing

<table>
<thead>
<tr>
<th>Chiller</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 2A</th>
<th>Phase 3</th>
<th>Phase 4</th>
<th>Phase 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>During</td>
<td>Completed</td>
<td>During</td>
<td>Completed</td>
<td>During</td>
<td>Completed</td>
</tr>
<tr>
<td>Chiller 1</td>
<td>4,150</td>
<td>4,150</td>
<td>4,150</td>
<td>4,150</td>
<td>-</td>
<td>4,150</td>
</tr>
<tr>
<td>Chiller 2</td>
<td>4,150</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chiller 3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chiller 4A</td>
<td>2,500</td>
<td>2,500</td>
<td>2,500</td>
<td>2,500</td>
<td>-</td>
<td>2,500</td>
</tr>
<tr>
<td>Chiller 4B</td>
<td>2,500</td>
<td>2,500</td>
<td>2,500</td>
<td>2,500</td>
<td>-</td>
<td>2,500</td>
</tr>
<tr>
<td>Chiller 1A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chiller 1B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chiller 2A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chiller 2B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chiller 3A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chiller 3B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total Capacity</td>
<td>13,300</td>
<td>9,150</td>
<td>9,150</td>
<td>9,150</td>
<td>6,150*</td>
<td>9,150</td>
</tr>
<tr>
<td>Firm Capacity (N+1)</td>
<td>9,150</td>
<td>5,000</td>
<td>5,000</td>
<td>5,000</td>
<td>2,000*</td>
<td>5,000</td>
</tr>
</tbody>
</table>

* Note: these capacities are dependent on operation of EX-1 and EX-2.
Phase 2: Relocation of Switchgear C equipment into Chemical Storage Room.

1. Chillers 1, 4A, and 4B to remain in service during Phase 2 work. Chillers 2 and 3 will be out of service during switchgear relocation.
2. Ensure Chiller 4A/4B controls circuits from service C have been relocated before beginning relocation of Switchgear C.
3. New air conditioning unit for Chemical Storage Room is to be installed prior to switchgear C relocation to Chemical Storage Room.
4. Switchgear C to be disconnected and relocated to Chemical Storage Room. The new chiller VFDs will be located in previous Switchgear location in Phases 3, 4, and 5.
5. Chiller 3 to remain out of service upon completion of Phase 2 to allow for immediate demolition of Chiller 3 in the next phase. Chiller 2 will also be out of service.

Phase 2A:

1. This phase is to be accomplished after Phase 2, during the winter free-cooling period. During this phase, capacity will be limited and the chillers cannot be operated.
2. CR header is to be isolated and drained, and cooling tower cell control valves for cells 3-7 are to be replaced. In addition, CH-1, 2, and 3 CR isolation automated valve at the header is to be replaced with a manual valve.
3. While CR header is drained, cooling tower cell control valves for cells 1, 2, and 10 are to be replaced by isolating one cell at a time from the transition bypass.
4. While each cooling tower cell line is drained and isolated for control valve replacement, new flow meters for each cooling tower cell line shall be installed.
5. While CR header is drained, new pressure transmitter is to be installed in CR main header.
6. East pump discharge header to be isolated and drained, and new CW pump tap and CH-4A/4B tap are to be added.

1. Chillers 1, 4A, and 4B to remain in service during Phase 3 work.

Demolition:

1. Contractor to perform demolition necessary for removal of chiller C-3. Equipment to be removed includes chiller C-3 and CW pump P-23. Piping for chiller C-3 shall be disconnected from the chilled water and CW headers. Contractor shall remove all auxiliary equipment, piping, accessories, electrical, controls, supports, pads associated with chiller C-3 and CW pump P-23.

2. Contractor shall remove and demolish CW pumps P-31, P-32, and P-33 in the west sump. All other pumps in east sump shall remain in service during Phase 3.

3. The discharge of three new CW pumps will connect to existing branches in the CW header. The fourth CW pump will need a new tap cut in for service; contractor to perform this cut in at this time by closing the CS isolation header and draining the West side of the pipe.
 a. During this, only Chillers 4A/4B and Chiller 1 (through the transition header, depending on valve positions) will be available.
 b. In addition, during this time, contractor is to replace automated CS isolation valves on bays 1, 2, and 3 with manual valves (by selectively isolating Chiller 1 when not in use).

4. During the demolition period, contractor shall also perform expansion of South Drive room for installation of new drives, including removal of existing FC-1 and installation of new HVAC units above South Drive room.

5. Contractor shall demolish existing CHWS/R piping for the North drive room and re-connect with new CHWS/R piping from the taps and AHU pumps.

6. During the demolition period, contractor shall disconnect 36” CS common header towards the south end of the chillers from each chiller and remove the piping that goes over bay 3.

New Work:

1. Contractor shall install new pads for new chillers C-3A, C-3B, and shall prepare west sump for installation of four CW pumps.

2. Contractor shall install new chillers C-3A and C-3B, chiller VFD’s, four CW pumps in west sump, and all associated axillary equipment, piping, accessories, electrical, controls, and supports required for operation of chillers C-3A & C-3B.

3. Discharges of new CW pumps will connect to existing and new header taps, and shall have new isolation valves installed as part of this work by isolating and draining the west half of the CS header.)
4. Chilled water and CW piping for chillers C-3A & C-3B will connect to the existing Chiller 3 branches in the chilled water and CW headers.

5. Perform start-up, tab, and commissioning on chillers C-3A & C-3B, new CW pumps, and piping.

6. Contractor shall install new AHU pumps and CHWS/R piping to and from the North and South Drive rooms, and shall do this without causing HVAC outage in the North Drive room, and before energizing electrical equipment in the South Drive room.

1. Chillers 1, 3A, 3B, 4A, and 4B to remain in service during Phase 4 work.

Demolition:

1. Contractor to perform demolition necessary for removal of chiller C-2. Equipment to be removed includes existing chiller C-2 and existing CW pump P-22. Piping for chiller C-2 shall be disconnected from the chilled water and CW headers. Contractor shall remove all auxiliary equipment, piping, accessories, electrical, controls, supports, pads associated with existing chiller C-2 and existing CW pump P-22.
2. During the demolition period, contractor shall remove the piping from the disconnected 36” CS common header towards the south end of the chillers that goes over bay 2.

New Work:

1. Contractor shall install new pads for new chillers C-2A, C-2B.
2. Contractor shall install new chillers C-2A and C-2B, chiller VFD’s, the new CHW pump, and all associated axillary equipment, piping, accessories, electrical, controls, and supports required for operation of chillers C-2A & C-2B.
3. Chilled water and CW piping for chillers C-2A & C-2B will connect to the existing Chiller 2 branches in the chilled water and CW headers.
4. Contractor shall also install pressure sensor in the CR transition header during this phase.
5. Perform start-up, tab, and commissioning on chillers C-2A & C-2B and piping.
6. Install free cooling heat exchanger pressure and flow instrumentation.

1. Chillers 2A, 2B, 3A, and 3B to remain in service during Phase 5 work.

Demolition:

1. Contractor to perform demolition necessary for removal of chiller C-1. Equipment to be removed includes existing chiller C-1 and existing CW pump P-21. Piping for chiller C-1 shall be disconnected from the chilled water and CW headers. Contractor shall remove all auxiliary equipment, piping, accessories, electrical, controls, supports, pads associated with existing chiller C-1 and existing CW pump P-21.
2. Contractor shall remove and demolish CW pump P-34 and P-35 in the east sump. All other pumps in west and east sumps shall remain in service during Phase 4.
3. Contractor to perform demolition necessary for removal of feed to chillers C-4A and C-4B. Remove existing CW pump 24 and piping to and from.
4. Demolish RTU-2 and associated piping.
5. During the demolition period, contractor shall remove the piping from the 36” CS common header towards the south end of the chillers that goes over bay 1 and any remaining pipe in the 36” CS common header which has not been removed.

New Work:

1. Contractor shall connect chiller C-4A and C-4B CS using new tap from 48” CS header and new piping runs. They shall also connect C-4A and C-4B to the hard-piped refrigerant transfer system.
2. Contractor shall install new pads for new chillers C-1A, C-1B and shall prepare east sump for installation of four new CW pumps.
3. Contractor shall install new chillers C-1A and C-1B, chiller VFD’s, four new CW pumps in east sump, and all associated auxiliary equipment, piping, accessories, electrical, controls, and supports required for operation of chillers C-1A & C-1B.
4. The discharge of new CW pumps will connect to existing branches (including the one created in phase 2A) in CW header. During this, the east header shall be drained and isolated, and the pump discharge isolation valves are to be replaced with the installation of the new pumps. Chilled water and CW piping for chillers C-1A & C-1B will connect to the existing Chiller 1 branches in the chilled water and CW headers.
5. Installation of new chilled water pump P-12 in pump room and new chilled water header differential pressure instrument.

6. Installation of new RTU-1 refrigerant transfer unit and connection to existing condenser water and refrigerant transfer piping.

7. Perform start-up, tab, and commissioning on chillers C-1A & C-1B and piping.
SECTION 230513 - COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
 B. SECTION 230400 – BASIC HVAC REQUIREMENTS

1.2 SUMMARY
 A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 REFERENCES
 A. AFBMA 9 - Load Ratings and Fatigue Life for Ball Bearings
 B. AFBMA 11 - Load Ratings and Fatigue Life for Roller Bearings
 C. IEEE 112 - Test Procedure for Poly-phase Induction Motors and Generators
 D. NEMA MG 1 - Motors and Generators
 E. NFPA 70 - National Electrical Code
 F. UL 506 – Specialty Transformers
 G. UL 508 – Industrial Control Equipment
 H. UL 1004 - Electric Motors.

1.4 COORDINATION
 A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 1. Motor controllers.
 2. Torque, speed, and horsepower requirements of the load.
3. Ratings and characteristics of supply circuit and required control sequence.
4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

A. Comply with NEMA MG 1 unless otherwise indicated.

B. Motors shall be NEMA PremiumTM type unless otherwise specified.

C. Motors shall meet requirements of ANSI, IEEE, and NEMA standards and shall be fully coordinated with equipment served, of sizes and electrical characteristics scheduled, and of approved manufacture as specified or of same manufacture as equipment served. Motors shall be of same manufacture unless an integral part of equipment item to which attached. Nameplate rating of motors shall match characteristics scheduled.

D. Motors shall be designed for NEMA Design B starting torque unless driven machine requires higher starting torque and shall be selected for quiet operation, free from magnetic hum. Motors shall have torque characteristics adequate to “break away” driven load and to accelerate load to rated speed in length of time that is at least 2 seconds less than the hot locked rotor thermal damage time of motor.

E. Provide motors with adequately sized electrical connection box with threaded hub for attachment of flexible conduit, unless bus duct connection is indicated. Where motors are connected to driven equipment by use of V-belt drive, provide adjustable rails.

F. Provide copper windings, terminal wiring, and copper or bronze lugs. AL/CU rated connectors will not be acceptable. Motors shall be open drip-proof type, except where specifically noted otherwise.

2.2 MOTOR CHARACTERISTICS

A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 5400 feet above sea level.

B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

C. Power factor shall not be less than 0.82 for motors less than 100 HP operating at motor full-load current.

D. Provide motors with conduit boxes that are fully rotational, diagonally split, including gasket between cover and box, and box and frame, with threaded hubs and grounding lug located within box for ground conductor connection. For fractional horsepower
motors where connection is made directly, provide threaded conduit connection in end frame.

2.3 POLYPHASE MOTORS

A. Description: NEMA MG 1, Design B, medium induction motor.

B. Efficiency: Premium Energy efficient, as defined in NEMA MG 1.

C. Provide motors rated for continuous operation with 1.15 service factor. For constant speed motors, driven load shall not exceed motor brake horsepower nameplate rating, exclusive of service factor, under normal operating condition.

D. Rotor: Random-wound, squirrel cage.

E. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.

F. Temperature Rise: Match insulation rating.

G. Insulation: Class F.

H. Code Letter Designation:
 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.

I. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

J. ODP motors, when provided with sealed anti-friction grease lubricated ball bearings, shall have a bearing AFBMA B-10 life of 40,000 hours. Provide factory lubrication prior to shipment. Provide grease-lubricated bearings with relief fittings.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 2. Energy- and Premium-Efficient Motors: Class B temperature rise based on 40 degrees C; Class F insulation.
3. Inverter-Duty Motors:
 a. Construct with triple film wire, increased winding slot insulation, increased insulation between phases, and increased first turn insulation.
 b. Use slot fillers as required to avoid loose windings.
 c. Insulation Class: Class F insulation and Class B temperature rise based on 40 degrees C. Class H insulation.
 d. Nameplate: Indicate that motor is inverter duty motor.
 e. Inverter duty motors shall be equipped with a shaft-grounding unit mounted on the fan housing with stub shaft extended from the motor shaft. Grounding unit shall be equipped with two brushes, totally enclosed and sealed against environmental contamination.
 f. Provide insulated or isolated bearings in the non-driven end for inverter duty rated motors.

4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

2.5 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 1. Permanent-split capacitor.
 2. Split phase.
 3. Capacitor start, inductor run.
 4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

PART 4 - MEASUREMENT

4.1 METHOD OF MEASUREMENT

A. No separate measurement shall be made for work under this Section.
PART 5 - PAYMENT

5.1 METHOD OF PAYMENT

A. No separate payment will be made for work under this Section. The cost of the work described in this Section shall be included in the Lump Sum Contract price.

END OF SECTION 230513
SECTION 230548.13 - VIBRATION CONTROLS FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Open-spring isolators.
 2. Vibration isolation equipment bases.

B. Related Requirements:
 1. Section 232113 "Hydronic Piping".

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
 2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of vibration isolation device type required.
 3. Include data substantiating that materials comply with requirements.

B. Shop Drawings:
 1. Contractor shall coordinate with approved and purchased pumps as well as Contract Documents to provide appropriately sized base frame.
 2. Detail fabrication and assembly of equipment bases. Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
 3. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
 4. Include static and dynamic loads on each component on drawings.

C. Delegated-Design Submittal: For each vibration isolation device.
1. Include design calculations for selecting vibration isolators and for designing vibration isolation bases.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Show coordination of vibration isolation device installation for HVAC piping and equipment with other systems and equipment in the vicinity, including other supports and restraints, if any.

B. Qualification Data: For testing agency.

1.5 CLOSEOUT SUBMITTALS

A. Manufacturer’s Certificate: Certify that isolators are properly installed and adjusted to meet or exceed specified requirements.

B. Operation and Maintenance Manuals

C. As-Built Plans: Submit complete as-built plans of all Work, including interface with other Work, in accordance with requirements as specified in Section 013300 "Submittal Procedures".

1. Record actual locations of hangers including attachment points.

1.6 QUALITY ASSURANCE

A. Maintain ASHRAE criteria for average noise criteria curves for all equipment at full load condition.

B. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

1.7 CONSTRUCTION WASTE MANAGEMENT

A. Construction waste shall be managed in accordance with provisions of Section 017419 "Construction Waste Management and Disposal". Documentation shall be submitted to satisfy the requirements of that Section.

PART 2 - PRODUCTS

2.1 OPEN-SPRING ISOLATORS

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.

3. Minimum Additional Travel: 50 percent of the required deflection at rated load.

4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.

5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

7. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.

2.2 VIBRATION ISOLATION EQUIPMENT BASES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

3. Mason Industries, Inc.
4. Vibration Eliminator Co., Inc.
5. Vibration Isolation.
6. Vibration Mountings & Controls, Inc.
 a. or approved equal.

B. Concrete Inertia Base: Factory-fabricated, welded, structural-steel bases and rails.

1. Design Requirements: Lowest possible mounting height with not less than 1-inch (25-mm) clearance above the floor. Include equipment anchor bolts and auxiliary motor slide bases or rails.
 a. Include supports for suction and discharge elbows for pumps.

2. Structural Steel: Steel shapes, plates, and bars complying with ASTM A 36/A 36M. Bases shall have shape to accommodate supported equipment.
3. Support Brackets: Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.

4. Fabrication: Fabricate steel templates to hold equipment anchor-bolt sleeves and anchors in place during placement of concrete. Obtain anchor-bolt templates from supported equipment manufacturer.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and equipment to receive vibration isolation control devices for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 VIBRATION CONTROL DEVICE INSTALLATION

A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Div 33.

B. Installation of vibration isolators must not cause any change of position of equipment, piping, or ductwork resulting in stresses or misalignment.

3.3 VIBRATION ISOLATION EQUIPMENT BASES INSTALLATION

A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Div 33.

3.4 MANUFACTURER'S FIELD SERVICES

A. Inspect isolated equipment after installation and submit report. Include static deflections.

3.5 EQUIPMENT ISOLATION SCHEDULE

A. The following schedule excludes vertical mounted turbine centrifugal pumps.
<table>
<thead>
<tr>
<th>Isolated Equipment</th>
<th>Base Type</th>
<th>Type</th>
<th>Static Deflection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pumps (<150 HP)</td>
<td>Concrete inertia</td>
<td>Open Spring</td>
<td>Min 1.5"</td>
</tr>
<tr>
<td>Pumps (>150 HP)</td>
<td>Concrete Inertia</td>
<td>Open Spring</td>
<td>Min 2.5"</td>
</tr>
</tbody>
</table>

PART 4 - MEASUREMENT

4.1 METHOD OF MEASUREMENT

A. No separate measurement shall be made for work under this Section.

PART 5 - PAYMENT

5.1 METHOD OF PAYMENT

A. No separate payment will be made for work under this Section. The cost of the work described in this Section shall be included in the Lump Sum Contract price.

END OF SECTION 230548.13
PIPESECTION 230719 - HVAC PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes insulating the following HVAC piping systems:
 1. Condensate drain piping, indoors and outdoors.
 2. Chilled-water piping, indoors.
 B. Related Sections:
 1. Section 230713 "Duct Insulation."
 2. Section 230716 "HVAC Equipment Insulation"

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated. Submit product description, list of materials and thickness for each service, and locations. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory and field applied if any) for each type of product indicated.
 1. Include data substantiating that materials comply with requirements.
 B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 2. Detail attachment and covering of heat tracing inside insulation.
 3. Detail insulation application at pipe expansion joints for each type of insulation.
 4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 5. Detail removable insulation at piping specialties.
 6. Detail application of field-applied jackets.
 7. Detail application at linkages of control devices.
 C. Samples: For each type of insulation and jacket indicated. Identify each Sample, describing product and intended use.
1. Preformed Pipe Insulation Materials: 12 inches (300 mm) long by NPS 2 (DN 50).
2. Sheet Form Insulation Materials: 12 inches (300 mm) square.
3. Jacket Materials for Pipe: 12 inches (300 mm) long by NPS 2 (DN 50).
4. Sheet Jacket Materials: 12 inches (300 mm) square.
5. Manufacturer’s Color Charts: For products where color is specified, show the full range of colors available for each type of finish material.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer.
B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.
C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. As-Built Plans: Submit complete as-built plans of all Work, including interface with other Work, in accordance with requirements as specified in Section 013300 "Submittal Procedures".

1.6 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.
B. Deliver materials to site in original factory packaging, labeled with manufacturer’s identification, including product density and thickness.
C. Store insulation in original wrapping and protect from weather and construction traffic.
D. Protect insulation against dirt, water, chemical, and mechanical damage.
1.8 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

1.9 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

1.10 CONSTRUCTION WASTE MANAGEMENT

A. Construction waste shall be managed in accordance with provisions of Section 017419 "Construction Waste Management and Disposal". Documentation shall be submitted to satisfy the requirements of that Section.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
F. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Pittsburgh Corning Corporation; Foamglas
 b. or approved equal.
 2. Block Insulation: ASTM C 552, Type I.
 3. Special-Shaped Insulation: ASTM C 552, Type III.
 4. Board Insulation: ASTM C 552, Type IV.
 5. Preformed Pipe Insulation without Jacket: Comply with ASTM C 552, Type II, Class 1.
 6. Preformed Pipe Insulation: Comply with ASTM C 552, Type II, Class 2.
 7. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.

G. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Aeroflex USA, Inc.; Aerocel.
 b. Armacell LLC; AP Armaflex.
 c. K-Flex USA; Insul-Lock, Insul-Tube, and K-FLEX LS.
 d. or approved equal.

2.2 ADHESIVES

A. Cellular-Glass Adhesive: Two-component, thermosetting urethane adhesive containing no flammable solvents, with a service temperature range of minus 100 to plus 200 deg F (minus 73 to plus 93 deg C).
 1. Products: Subject to compliance with requirements, provide one of the following:
 b. or approved equal.
 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Flexible Elastomeric: Comply with MIL-A-24179A, Type II, Class I.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Aeroflex USA, Inc.; Aeroseal.
b. Armacell LLC; Armaflex 520 Adhesive.
c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B.
 Fuller Company; 85-75.
d. K-Flex USA; R-373 Contact Adhesive.
e. or approved equal.

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less
 when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. PVC Jacket Adhesive: Compatible with PVC jacket.

1. Products: Subject to compliance with requirements, provide one of the
 following:
 a. Dow Corning Corporation; 739, Dow Silicone.
 b. Johns Manville; Zeston Perma-Weld, CEEL-TITE Solvent Welding
 Adhesive.
 d. Speedline Corporation; Polyco VP Adhesive.
 e. or approved equal.

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less
 when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. Adhesive shall comply with the testing and product requirements of the California
 Department of Health Services’ "Standard Practice for the Testing of Volatile
 Organic Emissions from Various Sources Using Small-Scale Environmental
 Chambers."

2.3 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply
 with MIL-PRF-19565C, Type II.

1. For indoor applications, use mastics that have a VOC content of 50 g/L or less
 when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient
 services.

1. Products: Subject to compliance with requirements, provide one of the
 following:
 a. Foster Brand, Specialty Construction Brands, Inc., a business of H. B.
 Fuller Company; 30-80/30-90.
 b. Vimasco Corporation; 749.
 c. or approved equal.

2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm (0.009
 metric perm) at 43-mil (1.09-mm) dry film thickness.
3. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

2.4 SEALANTS

A. Joint Sealants:

1. Joint Sealants for Cellular-Glass, Phenolic, and Polyisocyanurate Products:
 Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 405.
 d. Mon-Eco Industries, Inc.; 44-05.
 e. Pittsburgh Corning Corporation; Pittseal 444.
 f. or approved equal.

2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Permanently flexible, elastomeric sealant.
4. Service Temperature Range: Minus 100 to plus 300 deg F (Minus 73 to plus 149 deg C).
5. Color: White or gray.
6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. PVC Jacket Flashing Sealants:

1. Products: Subject to compliance with requirements, provide one of the following:
 b. or approved equal.

2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
2.5 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Johns Manville; Zeston.
 c. Proto Corporation; LoSmoke.
 d.
 e. or approved equal.

2. Adhesive: As recommended by jacket material manufacturer.

3. Color: Color as selected by DEN Project Manager.

4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. ABI, Ideal Tape Division; 370 White PVC tape.
 b. Compac Corporation; 130.
 c. Venture Tape; 1506 CW NS.
 d. or approved equal.

2. Width: 2 inches (50 mm).

3. Thickness: 6 mils (0.15 mm).

4. Adhesion: 64 ounces force/inch (0.7 N/mm) in width.

5. Elongation: 500 percent.

6. Tensile Strength: 18 lbf/inch (3.3 N/mm) in width.

2.6 SECUREMENTS

A. Bands:

1. Products: Subject to compliance with requirements, provide one of the following:
a. ITW Insulation Systems; Gerrard Strapping and Seals.
b. RPR Products, Inc.; Insul-Mate Strapping, Seals, and Springs.
c. or approved equal.

2. **Aluminum:** ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch (0.51 mm) thick, 3/4 inch (19 mm) wide with wing seal or closed seal.

3. **Springs:** Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application.

B. **Staples:** Outward-clinching insulation staples, nominal 3/4-inch-(19-mm-) wide, stainless steel or Monel.

C. **Wire:** 0.062-inch (1.6-mm) soft-annealed, stainless steel.

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 b. or approved equal.

PART 3 - EXECUTION

3.1 **ENVIRONMENTAL REQUIREMENTS**

A. Maintain ambient temperatures and conditions required by manufacturers of adhesives, mastics, and insulation cements.

B. Maintain temperature during and after installation for minimum period of 24 hours.

3.2 **EXAMINATION**

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 1. Verify that systems to be insulated have been tested and are free of defects.
 2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.3 **PREPARATION**

A. **Surface Preparation:** Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. **Surface Preparation:** Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
1. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F (0 and 149 deg C) with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.

C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.4 GENERAL INSTALLATION REQUIREMENTS

A. Apply insulation materials, accessories, and finishes according to the manufacturer’s written instructions; with smooth, straight, and even surfaces; free of voids throughout the length of piping, including fittings, valves, and specialties.

B. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.

C. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.

D. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

E. Install insulation with longitudinal seams at top and bottom of horizontal runs.

F. Install multiple layers of insulation with longitudinal and end seams staggered.

G. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

H. Seal joints and seams with vapor-retarder mastic on insulation indicated to receive a vapor retarder.

I. Keep insulation materials dry during application and finishing.

J. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

K. Install insulation with least number of joints practical.

L. Apply insulation over fittings, valves, and specialties, with continuous thermal and vapor-retarder integrity, unless otherwise indicated. Refer to special instructions for applying insulation over fittings, valves, and specialties.
M. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.

 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs at least 12 inches (300 mm) from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

N. Insulation Terminations: For insulation application where vapor retarders are indicated, taper insulation ends. Seal tapered ends with a compound recommended by the insulation material manufacturer to maintain vapor retarder.

O. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

P. Install insulation with factory-applied jackets as follows:

 1. Draw jacket tight and smooth.
 2. Circumferential joints: Cover circumferential joints with 3-inch (75-mm-) wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches (100 mm) o.c.
 3. Longitudinal seams: Overlap jacket longitudinal seams at least 1-1/2 inches (38 mm). Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at [2 inches (50 mm)] [4 inches (100 mm)] o.c.

 a. For below-ambient services, apply vapor-barrier mastic over staples.
 b. Exception: Do not staple longitudinal laps on insulation having a vapor retarder.

 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

Q. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

R. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
S. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

T. For above-ambient services, do not install insulation to the following:

1. Vibration-control devices.
2. Testing agency labels and stamps.
3. Nameplates and data plates.
5. Handholes.
6. Cleanouts.

3.5 PENETRATIONS

A. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

B. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.

1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistant joint sealers.

C. Insulation Installation at Floor Penetrations:

1. Pipe: Install insulation continuously through floor penetrations.
2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.6 GENERAL PIPE INSULATION INSTALLATION

A. Install materials in accordance with manufacturer's instructions and N.I.C.A. standards.

B. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

C. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:

1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.

4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.

6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

D. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

E. Install removable insulation covers at valves, strainers, and other locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.

2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.

4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches (50 mm) over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.

3.7 INSTALLATION OF CELLULAR-GLASS INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
3. For insulation with factory-applied jackets on above-ambient services, secure laps with outward-clinched staples at 6 inches (150 mm) o.c.
4. For insulation with factory-applied jackets on below-ambient services, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of same thickness as pipe insulation.
4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch (25 mm), and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install preformed sections of same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
2. When preformed sections of insulation are not available, install mitered sections of cellular-glass insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed sections of cellular-glass insulation to valve body.
2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.

3.8 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturers recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:
 1. Install pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install mitered sections of pipe insulation.
 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 3. Install insulation to flanges as specified for flange insulation application.
 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.9 FIELD-APPLIED JACKET INSTALLATION

A. Indoor, Concealed Applications: Insulated pipes conveying fluids above ambient temperature shall have standard jackets, with vapor barrier, factory-applied or field-applied. Insulate fittings, joints, and valves with insulation of like material and thickness as adjoining pipe, and finish with glass cloth and adhesive. PVC jackets may be used if in accordance with specified flame spread and smoke developed limitations.

B. Indoor, Exposed Applications: For pipe exposed in mechanical equipment rooms or in finished spaces, insulate as for concealed applications. Finish with reinforced white kraft and aluminum foil laminates. Do not use PVC jackets.
3.10 FINISHES

A. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

B. Color: Final color as selected by DEN Project Manager. Vary first and second coats to allow visual inspection of the completed Work.

C. Do not field paint aluminum or stainless-steel jackets.

3.11 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Tests and Inspections:

1. Inspect pipe, fittings, strainers, and valves, randomly selected by DEN Project Manager, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of flanged strainers, three locations of welded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.

D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.12 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:

1. Drainage piping located in crawl spaces.
2. Underground piping.
3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.13 INDOOR PIPING INSULATION SCHEDULE

A. Condensate and Equipment Drain Water below 60 Deg F (16 Deg C):

1. All Pipe Sizes: Insulation shall be one of the following:
B. Chilled Water:

1. **NPS 3 (DN 80) and Smaller:** Insulation shall be the following:
 a. **Cellular Glass:** 1-1/2 inches (38 mm) thick.

2. **NPS 4 (DN 100) to NPS 6 (DN 300):** Insulation shall be the following:
 a. **Cellular Glass:** 2 inches (50 mm) thick.

3. **NPS 8 (DN 350) and Larger:** Insulation shall be the following:
 a. **Cellular Glass:** 2 inches (75 mm) thick.

3.14 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor’s option.

C. Piping, Concealed:

1. None.
2. **PVC, Color-Coded by System:** 30 mils (0.8 mm) thick.

D. Piping, Exposed within 10’ of floor:

1. **Non PVC, Color-Coded by System:** 30 mils (0.8 mm) thick.

PART 4 - MEASUREMENT

4.1 METHOD OF MEASUREMENT

A. No separate measurement shall be made for work under this Section.

PART 5 - PAYMENT

5.1 METHOD OF PAYMENT

A. No separate payment will be made for work under this Section. The cost of the work described in this Section shall be included in the Lump Sum Contract price.
END OF SECTION 230719
SECTION 232113 - HYDRONIC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes pipe and fitting materials and joining methods for the following:
 1. Chilled-water piping.
 2. Condenser-water piping.
 3. Refrigerant piping.
 4. Drain piping.
 5. Air-vent piping.

B. Alternates: Refer to Division 01 Section 012300 "Alternates" for description of Work in this Section affected by Alternates.

1.3 ACTION SUBMITTALS

A. Product Data: Include data on pipe materials, pipe fittings, and accessories. Provide manufacturers catalogue information. Include flow and pressure drop curves based on manufacturer's testing for diverting fittings, calibrated balancing valves, and automatic flow-control valves. Include the following:
 1. Plastic pipe and fittings with solvent cement.
 2. RTRP and RTRF with adhesive.
 3. Pressure-seal fittings.
 5. Include data substantiating that materials comply with requirements.

B. Shop Drawings: For buried runs of insulated piping, submit drawings accurately showing piping layout, indicating:
 1. Lengths of each straight section of piping run and calculated amount of expansion or contraction applicable for each straight section of run based on design temperature range of piping system contents.
 2. Details of provisions, which will be applied (where needed, based on manufacturer's recommendations and subject to the DEN Project Manager's approval) to accommodate expansion and contraction in a manner acceptably protecting the installation and adequately maintaining effectiveness of insulation.
C. Shop Drawings: Detail fabrication of pipe anchors, hangers, special pipe support assemblies, alignment guides, expansion joints and loops, and their attachment to the building structure. Detail location of anchors, alignment guides, and expansion joints and loops.

D. Detailed Plans describing the sequence, means, methods, and any temporary modifications proposed to accomplish the required flushing, cleaning, and pressure testing for the new piping.

E. Delegated-Design Submittal:
 1. Design calculations and detailed fabrication and assembly of pipe anchors and alignment guides, hangers and supports for multiple pipes, expansion joints and loops, and attachments of the same to the building structure.
 2. Locations of pipe anchors and alignment guides and expansion joints and loops.
 3. Locations of and details for penetrations, including sleeves and sleeve seals for exterior walls, floors, basement, and foundation walls.
 4. Locations of and details for penetration and firestopping for fire- and smoke-rated wall and floor and ceiling assemblies.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Piping layout, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Suspended ceiling components.
 2. Other building services.
 3. Structural members.

B. Qualification Data: For Installer.

D. Pneumatic Leak Test:
 1. Contractor shall submit drawings and procedures of the pneumatic leak test to the DEN Project Manager no later that two (2) weeks prior to testing. Contractor may not proceed with tests unless approved in writing by the DEN Project Manager.

E. Field Quality Control Test Reports: Written reports of tests specified in Part 3 of this Section. Include the following:
 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Failed test results and corrective action taken to achieve requirements.
1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For hydronic specialties and special-duty valves to include in maintenance manuals.

B. As-Built Plans: Submit complete as-built plans of all Work, including interface with other Work, in accordance with requirements as specified in Section 013300 "Submittal Procedures".

1. Record actual locations of valves, piping and anchors.

C. Contractor shall submit fully dimensioned spool drawings for all welded piping work. Drawings shall indicate all weld types, sizes and materials to be used. Drawings to be submitted in current DEN approved format as per requirements of Division 01. Other file formats will not be accepted.

1.6 EXTRA STOCK

A. Provide two (2) repacking kits for each size and valve type.

1.7 QUALITY ASSURANCE

A. Manufacture: Unless specified otherwise, all materials and equipment shall be of domestic (USA) manufacture and shall be of the best quality used for the purpose in commercial practice.

B. Manufacturer's Qualifications:

1. Manufacturer: Company specializing in manufacturing the Products specified in this section with minimum three (3) years documented experience.

C. Installer Qualifications:

1. Installer: Company specializing in performing the Work of this Section with minimum five (5) years documented experience.

D. Steel Support Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

E. Pipe Welding: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code: Section IX.

2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
3. Provide certificate of compliance from authority having jurisdiction indicating approval of welders.
1.8 DELIVERY, STORAGE, AND HANDLING

A. Deliver, store, protect and handle products under provisions of Section 230400 "Basic HVAC Requirements" Division 01 requirements.

B. Accept components on site in shipping containers with labeling in place. Inspect for damage. Collect and save installation instructions for DEN Project Manager's use.

C. Provide temporary end caps and closures on piping and fittings. Maintain in place until installation.

D. Protect piping systems from entry of foreign materials by temporary covers, completing sections of the work, and isolating parts of completed system.

1.9 CONSTRUCTION WASTE MANAGEMENT

A. Construction waste shall be managed in accordance with provisions of Section 017419 "Construction Waste Management and Disposal". Documentation shall be submitted to satisfy the requirements of that Section.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature unless otherwise indicated:

1. Chilled-Water Piping: 160 psig at 200 deg F.
2. Condenser-Water Piping: 100 psig at 150 deg F.
5. Safety-Valve-Inlet and Outlet Piping: Equal to the pressure of the piping system to which it is attached.

2.2 STEEL PIPE AND FITTINGS

A. Steel Pipe: ASTM A 53/A 53M, black steel with plain ends; welded and seamless, Grade B, and wall thickness as indicated in "Piping Applications" Article.

C. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Classes 25, 125, and 250; raised ground face, and bolt holes spot faced as indicated in "Piping Applications" Article.

D. Wrought-Steel Fittings: ASTM A 234/A 234M, wall thickness to match adjoining pipe.
2.3 JOINING MATERIALS

A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.

1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch (3.2-mm) maximum thickness unless otherwise indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.

B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

C. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

D. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for joining copper with copper; or BAg-1, silver alloy for joining copper with bronze or steel.

E. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

F. Gasket Material: Thickness, material, and type suitable for fluid to be handled and working temperatures and pressures.

2.4 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. A.Y. McDonald Mfg. Co.
 b. Capitol Manufacturing Company.
 c. Central Plastics Company.
 d. Hart Industries International, Inc.
 e. Jomar International, Ltd.
 f. Matco-Norca.
 g. Watts Regulator Co.
 h. Zurn Industries, LLC; AquaSpec Commercial Faucet Products.
 i. or approved equal.

2. Description:
b. Pressure Rating: 125 psig (860 kPa) minimum at 180 deg F.
c. End Connections: Solder-joint copper alloy and threaded ferrous.

C. Dielectric Flanges:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 b. Central Plastics Company.
 c. Matco-Norca.
 d. Watts Regulator Co.
 e. Zurn Industries, LLC; AquaSpec Commercial Faucet Products.
 f. or approved equal.

2. Description:

 b. Factory-fabricated, bolted, companion-flange assembly.
 c. Pressure Rating: 125 psig minimum at 180 deg F.
 d. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

PART 3 - EXECUTION

3.1 ENVIRONMENTAL REQUIREMENTS

A. Do not install underground piping when bedding is wet or frozen.

3.2 GENERAL

A. Where more than one piping system material is specified, ensure system components are compatible and joined to ensure the integrity of the system is not jeopardized. Provide necessary joining fittings. Ensure flanges, union, and couplings for servicing are consistently provided.

B. Use unions, flanges, and couplings downstream of valves and at equipment or apparatus connections. Do not use direct welded connections to valves, equipment or other apparatus.

C. Use non-conducting dielectric waterway fittings or insulating flanges whenever jointing dissimilar metals in piping systems. Dielectric fittings shall have end connections that match the adjoining pipe.

D. Provide pipe hangers and supports in accordance with MSS SP69 unless indicated otherwise.
E. Use butterfly valves for shut off and to isolate equipment, part of systems, or vertical risers.

F. Use ball valves for throttling, bypass, or manual flow control services.

G. Use spring loaded check valves on discharge of condenser and chilled water water pumps where more than one pump supplies water to a common header.

H. Use butterfly valves in chilled and condenser water systems interchangeably with gate and globe valves.

I. Use only butterfly valves in chilled and condenser water systems for throttling and isolation service.

J. Butterfly valves shall be lug type.

K. Use 3/4 inch ball valves with cap for drains at main shut off valves, low points of piping, bases of vertical risers, and at equipment. Pipe to nearest floor drain.

L. Welded piping systems shall have butt-welded joints unless connecting to a valve, equipment or other flanged component. Flanged joints to expedite prefabricated piping installation are not allowed unless specifically approved by DEN Project Manager.

3.3 PIPING APPLICATIONS

A. Chilled-water piping, aboveground, NPS 2 (DN 50) and smaller, shall be the following:
 1. Schedule 40 steel pipe, fittings; cast-iron flanges and flange fittings; and threaded joints.
 2. Instrument, drain, and vent taps shall be socket welded from the header through the first root isolation valve

B. Chilled-water piping, aboveground, NPS 2-1/2 (DN 65) and larger, shall be the following:
 1. Schedule STD. WT. steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.

C. Condenser-water piping, aboveground, NPS 2 (DN 50) and smaller shall be the following:
 2. Schedule 40 steel pipe; fittings, flange fittings, and threaded joints. Instrument, drain, and vent taps shall be socket welded from the header through the first root isolation valve

D. Condenser-water piping, aboveground, NPS 2-1/2 (DN 65) and larger shall be the following:
 1. Schedule STD. WT. steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.

E. Refrigerant transfer piping, aboveground, shall be the following:
 1. Schedule 40 steel pipe; fittings, flange fittings, and socket welded joints.
2. Refrigerant system shall be installed fully welded through all fittings and valves. Thread are not allowed.

F. Drain Piping: Same materials and joining methods as for piping specified for the service in which drain is installed.

G. Air-Vent Piping:
 1. Inlet: Same as service where installed with metal-to-plastic transition fittings for plastic piping systems according to piping manufacturer’s written instructions.
 2. Outlet: Type L or M, annealed-temper copper tubing with soldered or flared joints.

H. Safety-Valve-Inlet and -Outlet Piping for Hot-Water Piping: Same materials and joining methods as for piping specified for the service in which safety valve is installed with metal-to-plastic transition fittings for plastic piping systems according to piping manufacturer’s written instructions.

I. Equipment Drains and Overflows:
 a. Fittings: Galvanized cast iron, or ASTM B 16.3 malleable iron.
 2. Copper Tubing: ASTM B 88, Type L, hard drawn.
 b. Joints: Solder, lead free, ASTM B 32, 95-5 tin-antimony, or tin and silver, with melting range 430 to 535 degrees F.

3.4 PIPING INSTALLATIONS

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

E. Install piping to permit valve servicing.
F. Install piping at indicated slopes.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Install piping to allow application of insulation.

J. Select system components with pressure rating equal to or greater than system operating pressure.

K. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.

L. Install drains, consisting of a tee fitting, NPS 3/4 (DN 20) ball valve, and short NPS 3/4 (DN 20) threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.

M. Install piping at a uniform grade of 0.2 percent upward in direction of flow.

N. Reduce pipe sizes using eccentric reducer fitting installed with level side up.

O. Install branch connections to mains using mechanically formed tee fittings in main pipe, with the branch connected to the bottom of the main pipe. For up-feed risers, connect the branch to the top of the main pipe.

P. Install valves according to, "Section 230523.12 "Ball Valves for HVAC Piping," Section 230523.13 "Butterfly Valves for HVAC Piping," and Section 230523.14 "Check Valves for HVAC Piping"

Q. Install unions in piping, NPS 2 (DN 50) and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.

R. Install flanges in piping, NPS 2-1/2 (DN 65) and larger, at final connections of equipment and elsewhere as indicated.

S. Install shutoff valve immediately upstream of each dielectric fitting.

T. Comply with requirements in Section 230516 "Expansion Fittings and Loops for HVAC Piping" for installation of expansion loops, expansion joints, anchors, and pipe alignment guides.

U. Comply with requirements in Section 230553 "Identification for HVAC Piping and Equipment" for identifying piping.

V. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

W. Provide low point drains and high point vents. Drains and vents shall be provided at ultimate high and low points as well as intermediate points to allow complete and safe
draining and refilling of individual lines and equipment branches capable of isolation.

3.5 DIELECTRIC FITTING INSTALLATION

A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.

B. Dielectric Fittings for NPS 2 (DN 50) and Smaller: Use dielectric unions.

C. Dielectric Fittings for NPS 2-1/2 and Larger: Use dielectric flange kits.

3.6 HANGERS AND SUPPORTS

A. Comply with requirements in Section 230529 "Hangers and Supports for HVAC Piping and Equipment" for hanger, support, and anchor devices. Comply with the following requirements for maximum spacing of supports.

B. Install the following pipe attachments:

1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet (6 m) long.
2. Adjustable roller hangers and spring hangers for individual horizontal piping 20 feet (6 m) or longer.
3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet (6 m) or longer, supported on a trapeze.
4. Spring hangers to support vertical runs.
5. Provide copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
6. On plastic pipe, install pads or cushions on bearing surfaces to prevent hanger from scratching pipe.

C. Install hangers for steel piping with the following maximum spacing and minimum rod sizes:

1. NPS 3/4 (DN 20): Maximum span, 7 feet (2.1 m).
2. NPS 1 (DN 25): Maximum span, 7 feet (2.1 m).
3. NPS 1-1/2 (DN 40): Maximum span, 9 feet (2.7 m).
4. NPS 2 (DN 50): Maximum span, 10 feet (3 m).
5. NPS 2-1/2 (DN 65): Maximum span, 11 feet (3.4 m).
6. NPS 3 (DN 80) and Larger: Maximum span, 12 feet (3.7 m).

D. Install hangers for drawn-temper copper piping with the following maximum spacing and minimum rod sizes:

1. NPS 3/4 (DN 20): Maximum span, 5 feet (1.5 m); minimum rod size, 1/4 inch (6.4 mm).
2. NPS 1 (DN 25): Maximum span, 6 feet (1.8 m); minimum rod size, 1/4 inch (6.4 mm).
3. NPS 1-1/4 ((DN 32) Maximum span, 7 feet (2.1 m); minimum rod size, 3/8 inch (10 mm).
4. NPS 1-1/2 (DN 40): Maximum span, 8 feet (2.4 m); minimum rod size, 3/8 inch (10 mm).
5. NPS 2 (DN 50): Maximum span, 8 feet (2.4 m); minimum rod size, 3/8 inch (10 mm).
6. NPS 2-1/2 (DN 65): Maximum span, 9 feet (2.7 m); minimum rod size, 3/8 inch (10 mm).
7. NPS 3 (DN 80) and Larger: Maximum span, 10 feet (3 m); minimum rod size, 3/8 inch (10 mm).

E. Support vertical runs at roof, at each floor, and at 10-foot (3-m) intervals between floors.

3.7 PIPE JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

D. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8/A5.8M.

E. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

F. Welded Joints: Construct joints according to AWS D10.12M/D10.12, using qualified processes and welding operators according to "Quality Assurance" Article.

G. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.8 FLANGES AND UNIONS

A. Unions for Pipe 2 Inches and Under:

1. Ferrous Piping: 150 psig malleable iron, threaded.
2. Copper Pipe: Bronze, soldered joints.

B. Flanges for Pipe Over 2 Inches:
 1. Ferrous Piping: 150 psig forged steel, slip on.
 2. Copper Piping: Bronze.
 3. Gaskets: 1/16 inch thick non-asbestos preformed gaskets, aramid fibers with nitrile (NBR) binder; Durlon "8500 Green", Garlock "IFG 5500", or approved equal.

3.9 TERMINAL EQUIPMENT CONNECTIONS

A. Sizes for supply and return piping connections shall be the same as or larger than equipment connections.

B. Install control valves in accessible locations close to connected equipment.

C. Install bypass piping with globe valve around control valve. If parallel control valves are installed, only one bypass is required.

D. Install ports for pressure gages and thermometers at coil inlet and outlet connections. Comply with requirements in Section 230519 "Meters and Gages for HVAC Piping."

3.10 CLEANING, FLUSHING, AND INSPECTING

A. Clean and flush system, with clear water, of all dirt, metal chips, sand, and foreign matter. After flushing, remove, clean, and replace all strainer baskets or screens. Inspect each run of each system for completion of joints, supports, accessory items, and obvious leaks.

B. For new branch connections or other instances where it is not feasible to flush new piping once installed, submit alternate cleaning plan to DEN PM and Engineer to ensure no foreign contaminants are introduced to the operating system.

C. Refrigerant piping sections must be completely cleaned and sealed prior to assembly per the chiller manufacturer’s recommendations.

D. Examine and inspect piping in accordance with ANSI B31.1, Chapter VI.

3.11 FIELD QUALITY CONTROL

A. Prepare hydronic piping according to ASME B31.9 and as follows:
 1. Leave joints, including welds, uninsulated and exposed for examination during test.
 2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
3. Flush hydronic piping systems with clean water; then remove and clean or replace strainer screens.

4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.

5. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.

B. Perform the following tests on hydronic piping:

1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.

2. While filling system, use vents installed at high points of system to release air. Use drains installed at low points for complete draining of test liquid.

3. Isolate expansion tanks and determine that hydronic system is full of water.

4. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the system's working pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed 90 percent of specified minimum yield strength or 1.7 times the "SE" value in Appendix A in ASME B31.9, "Building Services Piping."

5. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.

6. Prepare written report of testing.

C. Leak Testing:

1. Provide temporary equipment for testing, including pump and gages. Test piping system before insulation is installed, wherever feasible, and remove control devices before testing. Subject entire piping systems to leak tests, either as a whole, or in sections; but leave no part untested.

2. Test gauges shall have a range that provide for the test pressure to be in the middle third of the gauge scale.

3. Contractor shall provide written notification to the DEN Project Manager and DEN Inspector at least 48 hours before performing leak test. Perform all tests in the presence of the authorized City representative.

4. Hydrostatic Leak Test:

 a. Perform hydrostatic leak test on all piping systems.

 b. Hydrostatic Leak Test Procedure:

 1) Leak test procedures shall comply with ASME B31.9.

5. Testing shall be witnessed by DEN Mechanical Inspector and DEN Project Manager or Designated Representative.

6. Repair piping systems which fail required piping test, by disassembly and
reinstallation, using new materials to extent required to overcome leakage. Do not use chemicals, stop-leak compounds, mastics, or other temporary repair methods.

7. Drain test water from piping systems after testing and repair work that has been completed.

8. Prepare written report of testing procedures and result.

D. Perform the following before operating the system:

1. Open manual valves fully.
2. Inspect pumps for proper rotation.
3. Set makeup pressure-reducing valves for required system pressure.
4. Inspect air vents at high points of system and determine if all are installed and operating freely (automatic type), or bleed air completely (manual type).
5. Set temperature controls so all coils are calling for full flow.
6. Inspect and set operating temperatures of hydronic equipment, such as boilers, chillers, cooling towers, to specified values.
7. Verify lubrication of motors and bearings.

PART 4 - MEASUREMENT

4.1 METHOD OF MEASUREMENT

A. No separate measurement shall be made for work under this Section.

PART 5 - PAYMENT

5.1 METHOD OF PAYMENT

A. No separate payment will be made for work under this Section. The cost of the work described in this Section shall be included in the Lump Sum Contract price.

END OF SECTION 232113
SECTION 232123 - HYDRONIC PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Separately coupled, base-mounted, double-suction centrifugal pumps.
2. Separately coupled, vertically mounted, turbine centrifugal pumps.

1.3 DEFINITIONS

A. Buna-N: Nitrile rubber.

B. EPT: Ethylene propylene terpolymer.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of pump. Include certified performance curves and rated capacities, operating characteristics, furnished specialties, final impeller dimensions, and accessories for each type of product indicated. Indicate pump’s operating point on curves.

1. Include data substantiating that materials comply with requirements.

B. Shop Drawings: For each pump.

1. Show pump layout and connections.
2. Include setting drawings with templates for installing foundation and anchor bolts and other anchorages.
3. Include diagrams for power, signal, and control wiring.

C. Millwright’s Certificate: Certify that base mounted pumps have been aligned.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For pumps to include in emergency, operation, and maintenance manuals.
1. Include installation instructions, assembly views, lubrication instructions, and replacement parts list.

B. As-Built Plans: Submit complete as-built plans of all Work, including interface with other Work, in accordance with requirements as specified in Section 013300 "Submittal Procedures".

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Mechanical Seals: One (1) mechanical seal(s) for each pump.

1.7 QUALITY ASSURANCE

A. Source Limitations: Obtain hydronic pumps through one source from a single manufacturer.

B. Product Options: Drawings indicate size, profiles, and dimensional requirements of hydronic pumps and are based on the specific system indicated. Refer to Division 1.

C. Manufacturer: Company specializing in manufacture, assembly, and field performance of pumps with minimum of five (5) years experience.

D. Alignment: Base mounted pumps shall be aligned by qualified millwright.

E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

F. UL Compliance: Comply with UL 778 for motor-operated water pumps.

1.8 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 3.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Deliver, store, protect and handle products under provisions of Division 1.

B. Manufacturer's Preparation for Shipping: Clean flanges and exposed machined metal surfaces and treat with anticorrosion compound after assembly and testing. Protect flanges, pipe openings, and nozzles with wooden flange covers or with screwed-in plugs.
C. Store pumps in clean, dry location.

D. Retain protective covers for flanges and protective coatings during storage. Maintain in place until installation.

E. Protect bearings and couplings against damage from sand, grit, and other foreign matter.

F. Comply with pump manufacturer's written rigging instructions.

1.10 CONSTRUCTION WASTE MANAGEMENT

A. Construction waste shall be managed in accordance with provisions of Section 017419 "Construction Waste Management and Disposal". Documentation shall be submitted to satisfy the requirements of that Section.

PART 2 - PRODUCTS

2.1 SEPARATELY COUPLED, BASE-MOUNTED, DOUBLE-SUCTION CENTRIFUGAL PUMPS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Armstrong Pumps Inc.
3. Aurora Pump; Division of Pentair Pump Group.
4. Buffalo Pumps, Inc.
5. Crane Pumps & Systems.
6. Flowserve Corporation.
7. ITT Corporation; Bell & Gossett.
8. Mepco, LLC.
9. PACO Pumps.
12. TACO Incorporated.
13. or approved equal.

B. Description: Factory-assembled and tested, centrifugal, impeller-between-bearings, separately coupled, double-suction pump as defined in HI 1.1-1.2 and HI 1.3; designed for base mounting, with pump and motor shafts horizontal.

C. Pump Construction:

1. Casing: Horizontally split, cast iron, with replaceable bronze wear rings, threaded gage tappings at inlet and outlet, drain plug at bottom and air vent at top of volute, and ASME B16.1, Class 125 flanges. Casing supports shall allow removal and replacement of impeller without disconnecting piping.
2. Impeller: ASTM B 584, cast bronze; statically and dynamically balanced, and keyed to shaft. For pumps not frequency-drive controlled, trim impeller to match specified performance.

4. Seal: Mechanical seal consisting of carbon rotating ring against a ceramic seat held by a stainless-steel spring, and EPT bellows and gasket.

5. Pump Bearings: Grease-lubricated ball bearings in cast-iron housing with grease fittings.

D. Shaft Coupling: Molded-rubber insert and interlocking spider capable of absorbing vibration. Couplings shall be drop-out type to allow disassembly and removal without removing pump shaft or motor. EPDM coupling sleeve for variable-speed applications.

E. Coupling Guard: Dual rated; ANSI B15.1, Section 8; OSHA 1910.219 approved; steel; removable; attached to mounting frame.

F. Mounting Frame: Welded-steel frame and cross members, factory fabricated from ASTM A 36/A 36M channels and angles. Fabricate to mount pump casing, coupling guard, and motor.

G. Motor: Single speed, secured to mounting frame, with adjustable alignment.

1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."

 a. Enclosure: Open, drip proof.
 b. Enclosure Materials: Cast iron.
 c. Motor Bearings: Grease lubricated.
 d. Unusual Service Conditions:
 1) Altitude: 5,400 above sea level.
 e. Efficiency: Premium efficient.
 f. NEMA Design: B.
 g. Service Factor: 1.15.

2.2 SEPARATELY COUPLED, VERTICALLY MOUNTED, TURBINE CENTRIFUGAL PUMPS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Aurora Pump; Division of Pentair Pump Group.
 2. Crane Pumps & Systems.
 3. Flowserve Corporation.
 4. Mepco, LLC.
5. PACO Pumps.
7. Peerless Pump Company.
8. Pentair Water; Fairbanks Morse.
9. or approved equal.

B. Description: Factory or field-assembled and -tested, multistage, centrifugal, impeller-between-bearings, end-suction pump as defined in HI 2.1-2.2 and HI 2.3; designed for installation with pump and motor shafts mounted vertically and projecting into a sump.

C. Pump Construction:

1. Pump Bowl: Cast iron, with basket strainer, replaceable bronze wear ring, and suction bell. Water passages of intermediate bowls shall be coated with porcelain enamel.
2. Impeller: ASTM B 584, cast bronze; statically and dynamically balanced and keyed to shaft. For pumps not frequency-drive controlled, trim impeller to match specified performance.
3. Pump Shaft: Stainless steel sized according to manufacturer's requirements.
6. Seal: Mechanical seal consisting of carbon rotating ring against a ceramic seat held by a stainless-steel spring, and EPT bellows and gasket. Include water slinger on shaft between motor and seal.

D. Shaft Coupling: Keyed with locking collets.

E. Discharge Head: ASME B16.1, Class 125 discharge flange with threaded gage tapping. Top of discharge head shall have a registered fit to accurately locate the driver.

F. Drive Ratchet: Non-reversing ratchet.

G. Hollow Shaft Motor: Single speed and secured to discharge head.

1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 a. Enclosure: Totally enclosed, fan cooled.
 b. Enclosure Materials: Cast iron.
 c. Motor Bearings: Grease lubricated.
 d. Unusual Service Conditions:
 1) Altitude: 5,400 ft above sea level.

 e. Efficiency: Premium efficient.
PART 3 - EXECUTION

3.1 PERFORMANCE REQUIREMENTS

A. Ensure pumps operate at specified system fluid temperatures without vapor binding and cavitation, are non-overloading in parallel or individual operation, and operate within 25 percent of midpoint of published maximum efficiency curve.

3.2 EXAMINATION

A. Examine equipment foundations and anchor-bolt locations for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for piping systems to verify actual locations of piping connections before pump installation.

C. Examine foundations and inertia bases for suitable conditions where pumps are to be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.3 CONCRETE BASES

A. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around full perimeter of base.

B. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.

C. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.

D. Install anchor bolts to elevations required for proper attachment to supported equipment.

E. Cast-in-place concrete materials and placement requirements are specified in Division 3.

1. Comply with requirements of Division 3.

3.4 PUMP INSTALLATION

A. Comply with HI 1.4 and HI 2.4.
B. Install pumps to provide access for periodic maintenance including removing motors, impellers, couplings, and accessories.

C. Independently support pumps and piping so weight of piping is not supported by pumps and weight of pumps is not supported by piping.

D. Automatic Condensate Pump Units: Install units for collecting condensate and extend to open drain.

E. Equipment Mounting:
 1. Install base-mounted pumps on cast-in-place concrete equipment bases. Comply with requirements for equipment bases and foundations specified in Division 03.
 a. Disconnect coupling before setting. Do not reconnect couplings until alignment procedure is complete.
 b. Support pump baseplate on rectangular metal blocks and shims, or on metal wedges with small taper, at points near foundation bolts to provide a gap of 3/4 to 1-1/2 inches between pump base and foundation for grouting.
 2. Comply with requirements for vibration isolation and seismic control devices specified in Section 230548 "Vibration and Seismic Controls for HVAC."

3.5 ALIGMENT

A. Engage a factory-authorized service representative to assist Contractor and perform alignment service.

B. Align pump and motor shafts and piping connections after setting on foundation, grout has been set and foundation bolts have been tightened, and piping connections have been made.

C. Comply with requirements in Hydronics Institute standards for alignment of pump and motor shaft. Add shims to the motor feet and bolt motor to base frame. Do not use grout between motor feet and base frame.
 1. Adjust pump and motor shafts for angular and offset alignment by methods specified in HI 1.1-1.5 and HI 2.1-2.5.

D. Comply with pump and coupling manufacturers’ written instructions.

E. After alignment is correct, tighten foundation bolts evenly but not too firmly. Completely fill baseplate with non-shrink, nonmetallic grout while metal blocks and shims or wedges are in place. After grout has cured, fully tighten foundation bolts.
3.6 CONNECTIONS

A. Comply with requirements for piping specified in Section 232113 “Hydronic Piping” and Section 232116 “Hydronic Piping Specialties.” Drawings indicate general arrangement of piping, fittings, and specialties.

B. Where installing piping adjacent to pump, allow space for service and maintenance.

C. Connect piping to pumps. Unless otherwise noted, install valves that are same size as piping connected to pumps.

D. Install suction and discharge pipe sizes equal to or greater than diameter of pump nozzles.

E. Install check and shutoff valves on discharge side of pumps.

F. Install Y-type strainer and shutoff valve on suction side of base mounted pumps.

G. Install flexible connectors on suction and discharge sides of base-mounted pumps between pump casing and valves, but not immediately adjacent to pump suction or discharge. Install flexible connectors on discharge of vertical turbine pumps.

H. Install pressure gages on pump suction and discharge or at integral pressure-gage tapping, or install single gage with multiple-input selector valve as detailed.

I. Ground equipment according to Section 260526 “Grounding and Bonding for Electrical Systems.”

J. Connect wiring according to Section 260519 “Low-Voltage Electrical Power Conductors and Cables.”

3.7 STARTUP SERVICE

A. Engage a factory-authorized service representative to assist Contractor and perform startup service.

1. Complete installation and startup checks according to manufacturer’s written instructions.
2. Check piping connections for tightness.
3. Clean strainers on suction piping.
4. Perform the following startup checks for each pump before starting:
 a. Verify bearing lubrication.
 b. Verify that pump is free to rotate by hand and that pump for handling hot liquid is free to rotate with pump hot and cold. If pump is bound or drags, do not operate until cause of trouble is determined and corrected.
 c. Verify that pump is rotating in the correct direction.
5. Prime pump by opening suction valves and closing drains, and prepare pump for operation.
7. Open discharge valve slowly.

3.8 DEMONSTRATION
A. Engage a factory-authorized service representative to assist Contractor and train Owner's maintenance personnel to adjust, operate, and maintain hydronic pumps.

1. Schedule training with Owner, through DEN Project Manager, with at least seven (7) days advance notice.

PART 4 - MEASUREMENT

4.1 METHOD OF MEASUREMENT
A. No separate measurement shall be made for work under this Section.

PART 5 - PAYMENT

5.1 METHOD OF PAYMENT
A. No separate payment will be made for work under this Section. The cost of the work described in this Section shall be included in the Lump Sum Contract price.

END OF SECTION 232123
SECTION 236416 - CENTRIFUGAL WATER CHILLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Packaged, water-cooled, electric-motor-driven centrifugal chillers.
2. Packaged, refrigerant recovery units.

B. Related Section:

1. Section 283500 "Refrigerant Detection and Alarm" for refrigerant monitors, alarms, and ventilation equipment interlocks.

1.3 DEFINITIONS

A. COP: Coefficient of performance. The ratio of the rate of heat removal to the rate of energy input using consistent units for any given set of rating conditions.

B. DDC: Direct digital control.

C. EER: Energy-efficiency ratio. The ratio of the cooling capacity given in terms of Btu/h to the total power input given in terms of watts at any given set of rating conditions.

D. IPLV: Integrated part-load value. A single-number part-load efficiency figure of merit calculated per the method defined by AHRI 506/110 and referenced to AHRI standard rating conditions.

E. kW/Ton (kW/kW): The ratio of total power input of the chiller in kilowatts to the net refrigerating capacity in tons (kW) at any given set of rating conditions.

F. NPLV: Nonstandard part-load value. A single-number part-load efficiency figure of merit calculated per the method defined by AHRI 506/110 and intended for operating conditions other than the AHRI standard rating conditions.

1.4 PERFORMANCE REQUIREMENTS

A. Condenser-Fluid Temperature Performance:
1. Startup Condenser-Fluid Temperature: Chiller shall be capable of starting with an entering condenser-fluid temperature of 55 deg F and providing stable operation until the system temperature is elevated to the minimum operating entering condenser-fluid temperature.

2. Minimum Operating Condenser-Fluid Temperature: Chiller shall be capable of continuous operation over the entire capacity range indicated with an entering condenser-fluid temperature of 55 deg F.

3. Make factory modifications to standard chiller design if necessary to comply with performance indicated.

B. Site Altitude: Chiller shall be suitable for altitude at which installed without affecting performance indicated. Make adjustments to affected chiller components to account for site altitude of 5400 feet above sea level.

C. Performance Tolerance: Comply with AHRI 506/110:

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include refrigerant, rated capacities, operating characteristics, furnished specialties, and accessories.

1. Performance at AHRI standard conditions and at conditions indicated, refer to attached data sheet to be completed by bidder.

2. Performance at AHRI standard unloading conditions.

3. Minimum evaporator flow rate.

4. Refrigerant capacity of chiller.

5. Oil capacity of chiller.

6. Fluid capacity of evaporator and condenser.

9. Include data substantiating that materials comply with requirements.

B. LEED Submittals:

1. Product Data for Credit EA 4: Documentation indicating that equipment and refrigerants comply.

C. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.

1. Detail equipment assemblies and indicate dimensions, weights, load distribution, required clearances, method of field assembly, components, and location and size of each field connection.

2. Wiring Diagrams: For power, signal, and control wiring.

3. Show proposed physical layout of equipment relative to the space in which it is to be installed, to demonstrate:

 a. Coordination of piping, duct, venting and electrical connections (as applicable) in relationship to adjacent work and building elements.

 b. Acceptable clearances for servicing and maintaining equipment to be
installed, including adjacent equipment not specified by this Section.
c. Electronic/CAD floorplan backgrounds are available upon request.

D. INFORMATIONAL SUBMITTALS
1. Coordination Drawings: Floor plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 2. Structural supports.
 3. Piping roughing-in requirements.
 4. Wiring roughing-in requirements, including spaces reserved for electrical equipment.
 5. Access requirements, including working clearances for mechanical controls and electrical equipment, and tube pull and service clearances.

E. Certificates: For certification required in "Quality Assurance" Article.

F. Manufacturer's Certificate: Certify that components of package not furnished by manufacturer have been selected in accordance with manufacturer's requirements.

G. Source quality-control reports.

H. Startup service reports.

I. Warranty: Sample of special warranty.

1.6 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For each chiller to include in emergency, operation, and maintenance manuals.

B. As-Built Plans: Submit complete as-built plans of all Work, including interface with other Work, in accordance with requirements as specified in Section 013300 "Submittal Procedures".

1.7 MAINTENANCE MATERIALS
A. Provide canister(s) with one spare charge of refrigerant.

1.8 QUALITY ASSURANCE
A. AHRI Certification: Certify chiller according to AHRI 550 certification program.

B. AHRI Rating: Rate chiller performance according to requirements in AHRI 506/110.

C. ASHRAE Compliance:
 1. ASHRAE 15 for safety code for mechanical refrigeration.
 2. ASHRAE 147 for refrigerant leaks, recovery, and handling and storage requirements.
D. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1.

E. ASME Compliance: Fabricate and label chillers to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1, as applicable to chiller design.

F. Comply with NFPA 70.

G. Comply with requirements of UL, and include label by a qualified testing agency showing compliance.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Ship each chiller with a full charge of refrigerant. Charge each chiller with nitrogen if refrigerant is shipped in containers separate from chiller.

B. Ship each oil-lubricated chiller with a full charge of oil.

 1. Ship oil in containers separate from chiller.

C. Package chiller for export shipping in totally enclosed bagging.

D. Comply with manufacturer's installation instructions for rigging, unloading, and transporting units.

E. Protect units from physical damage.

F. Coordinate delivery dates with chiller manufacturer and construction schedule. The phased nature of this project will likely require the Contractor to negotiate staggered delivery dates with the manufacturer that are closely coordinated with construction activities. Alternatively, provide an approved means to temporarily store the equipment.

1.10 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

1.11 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of chillers that fail in materials or workmanship within specified warranty period.

 1. Extended warranties include, but are not limited to, the following:

 a. Complete chiller including refrigerant and oil charge.
 b. Complete compressor and drive assembly including refrigerant and oil charge.
 c. Refrigerant and oil charge.
 d. Parts and labor.
1. Loss of refrigerant charge for any reason.

2. Warranty Period: Minimum two (2) years from date of Substantial Completion.

1.12 CONSTRUCTION WASTE MANAGEMENT

A. Construction waste shall be managed in accordance with provisions of Section 017419 "Construction Waste Management and Disposal". Documentation shall be submitted to satisfy the requirements of that Section.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Carrier Corporation.
 2. Daikin.
 3. Trane.
 5. or approved equal.

2.2 MANUFACTURED UNIT

A. Description: Factory-assembled and -tested chiller complete with compressor, compressor motor, compressor motor controller, lubrication system evaporator, condenser, controls, interconnecting unit piping and wiring, and indicated accessories.

 1. For chillers with dual compressors, provide each compressor with a dedicated motor and motor controller, and provide for continued operation when either compressor-drive assembly fails or is being serviced.

2.3 COMPRESSOR-DRIVE ASSEMBLY

A. Description: Single-stage or multistage, variable-displacement, centrifugal-type, dual compressor driven by electric motors.

B. Compressor:

 1. Casing: Cast iron, precision ground.
 2. Impeller: High-strength cast aluminum or cast-aluminum alloy on carbon- or alloy-steel shaft.

C. Drive: Direct drive, hermetic design using an electric motor as the driver.

 1. Seals: Seal drive assembly to prevent refrigerant leakage.
D. Compressor Motor:
 1. Continuous-duty, squirrel-cage, induction-type, two-pole motor with energy efficiency required to suit chiller energy efficiency indicated.
 2. Factory mounted, aligned, and balanced as part of compressor assembly before shipping.
 3. Motor shall be of sufficient capacity to drive compressor throughout entire operating range without overload and with sufficient capacity to start and accelerate compressor without damage.
 4. Provide motor with thermistor or RTD in single motor winding to monitor temperature and report information to chiller control panel.
 5. Provide motor with thermistor or RTD to monitor bearing temperature and report information to chiller control panel.
 6. Provide motor with internal electric heater, internally powered from chiller power supply.

E. Vibration Balance: Balance chiller compressor and drive assembly to provide a precision balance that is free of noticeable vibration over the entire operating range.
 1. Overspeed Test: 25 percent above design operating speed.

F. Service: Easily accessible for inspection and service.
 1. Compressor's internal components shall be accessible without having to remove compressor-drive assembly from chiller.
 2. Provide lifting lugs or eyebolts attached to casing.

G. Economizers: For multistage chillers, provide interstage economizers.

H. Capacity Control: Modulating, variable-inlet, guide-vane to achieve performance indicated.
 1. Maintain stable operation that is free of surge, cavitation, and vibration throughout range of operation. Configure to achieve most energy-efficient operation possible.
 2. Operating Range: From 100 to 15 percent of design capacity.
 3. Chillers with variable frequency controllers shall modulate compressor speed with variable-inlet, guide-vane control to achieve optimum energy efficiency.

I. Oil Lubrication System: Consisting of pump, filtration, heater as required, cooler, factory-wired power connection, and controls.
 1. Provide lubrication to bearings, gears, and other rotating surfaces at all operating, startup, coastdown, and standby conditions including power failure.
 2. Manufacturer's standard method to remove refrigerant from oil.
 3. Oil filter shall be the easily replaceable cartridge type, minimum 0.5-micron efficiency, with means of positive isolation while servicing.
 4. Refrigerant-cooled oil cooler.
 5. Factory-installed and pressure-tested piping with isolation valves and accessories.
 6. Oil compatible with refrigerant and chiller components.
7. Positive visual indication of oil level.

2.4 REFRIGERATION

A. Refrigerant:

1. Type: R-123; ASHRAE 34, Class B1.
2. Compatibility: Chiller parts exposed to refrigerants shall be fully compatible with refrigerants, and pressure components shall be rated for refrigerant pressures.

B. Refrigerant Flow Control: Manufacturer’s standard refrigerant flow-control device satisfying performance requirements indicated.

C. Pressure Relief Device:

1. Comply with requirements in ASHRAE 15 and in applicable portions of ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
2. For Chillers Using R-123: Rupture disc constructed of frangible carbon.

D. Refrigeration Transfer: Provide service valves and other factory-installed accessories required to facilitate transfer of refrigerant from chiller to a remote refrigerant storage and recycling system. Comply with requirements in ASHRAE 15 and ASHRAE 147.

E. Purge System:

1. For chillers operating at subatmospheric pressures (using R-123 refrigerant), factory install an automatic purge system for collection and return of refrigerant and lubricating oil and for removal of noncondensables including, but not limited to, water, water vapor, and noncondensable gases.
2. System shall be a thermal purge design, refrigerant or air cooled, equipped with a carbon filter that includes an automatic regeneration cycle.
3. Factory wire to chiller’s main power supply and system complete with controls, piping, and refrigerant valves to isolate the purge system from the chiller.
5. Controls shall interface with chiller control panel to indicate modes of operation, set points, data reports, diagnostics, and alarms.
6. Efficiency of not more than 0.02 lb of refrigerant per pound of air (9 g of refrigerant per gram of air) when rated according to AHRI 580.
7. Operation independent of chiller per ASHRAE 147.

F. Positive-Pressure System:

1. For chillers operating at subatmospheric pressures (using R-123 refrigerant), factory install an automatic positive-pressure system.
2. During nonoperational periods, positive-pressure system shall automatically maintain a positive pressure for atmosphere in the refrigerant pressure vessel of not less than 0.5 psig adjustable up to a pressure that remains within the vessel design pressure limits.
3. System shall be factory wired and include controller, electric heat, pressure transmitter, or switch.
2.5 EVAPORATOR

A. Description: Shell-and-tube design with water in tubes and refrigerant surrounding tubes within shell. Shell is separate from condenser.

B. Shell Material: Carbon-steel rolled plates with continuously welded seams or seamless pipe.

C. Designed to prevent liquid refrigerant carryover from entering compressor.

D. Provide evaporator with sight glass or other form of positive visual verification of liquid-refrigerant level.

E. Tubes:
 1. Individually replaceable from either end and without damage to tube sheets and other tubes.
 2. Mechanically expanded into end sheets and physically attached to intermediate tube sheets.
 3. Material: Copper
 4. Nominal OD: Manufacturer’s choice.
 5. Minimum Wall Thickness: Manufacturer's choice

F. End Tube Sheets: Continuously welded to each end of shell; drilled and reamed to accommodate tubes with positive seal between fluid in tubes and refrigerant in shell.

G. Intermediate Tube Sheets: Installed in shell and spaced along length of tube at intervals required to eliminate vibration and to avoid contact of tubes resulting in abrasion and wear.

H. Water Box:
 1. Cast-iron or carbon-steel construction; arranged to provide visual inspection and cleaning of tubes from either end without disturbing refrigerant in shell.
 3. Provide water boxes and marine water-box covers with lifting lugs or eyebolts.
 4. Hinged or davited water boxes.
 7. Thermistor or RTD temperature sensor factory installed in each nozzle.
 8. Fit each water box with 1-inch drain connection at low point and vent connection at high point, each with threaded plug.

I. Additional Corrosion Protection:
 1. Electrolytic corrosion-inhibitor anode.
2.6 CONDENSER

A. Description: Shell-and-tube design with water in tubes and refrigerant surrounding tubes within shell. Shell is separate from evaporator.

B. Shell Material: Carbon-steel rolled plates with continuously welded seams or seamless pipe.

C. Designed to prevent direct impingement of high-velocity hot gas from compressor discharge on tubes.

D. Provide condenser with sight glass or other form of positive visual verification of refrigerant charge and condition.

E. Tubes:
 1. Individually replaceable from either end and without damage to tube sheets and other tubes.
 2. Mechanically expanded into end sheets and physically attached to intermediate tube sheets.
 3. Material: Copper.
 5. Minimum Wall Thickness: Manufacturer's choice.

F. End Tube Sheets: Continuously welded to each end of shell; drilled and reamed to accommodate tubes with positive seal between fluid in tubes and refrigerant in shell.

G. Intermediate Tube Sheets: Installed in shell and spaced along length of tube at intervals required to eliminate vibration and to avoid contact of tubes resulting in abrasion and wear.

H. Water Box:
 1. Cast-iron or carbon-steel construction; arranged to provide visual inspection and cleaning of tubes from either end without disturbing refrigerant in shell.
 3. Provide water boxes and marine water-box covers with lifting lugs or eyebolts.
 4. Hinged or davited water boxes.
 7. Thermistor or RTD temperature sensor factory installed in each nozzle.
 8. Fit each water box with 1-inch drain connection at low point and vent connection at high point, each with threaded plug.

I. Additional Corrosion Protection:
 1. Electrolytic corrosion-inhibitor anode.
 2. Coat wetted surfaces with a corrosion-resistant finish.
2.7 INSULATION

A. Closed-cell, flexible elastomeric thermal insulation complying with ASTM C 534, Type I for tubular materials and Type II for sheet materials.

1. Thickness: 3/4 inch.

B. Adhesive: As recommended by insulation manufacturer.

C. Factory-applied insulation over all cold surfaces of chiller capable of forming condensation. Components shall include, but not be limited to, evaporator shell and end tube sheets, evaporator water boxes including nozzles, refrigerant suction pipe from evaporator to compressor, cold surfaces of compressor, refrigerant-cooled motor, and auxiliary piping.

1. Apply adhesive to 100 percent of insulation contact surface.
2. Before insulating steel surfaces, prepare surfaces for paint, and prime and paint as indicated for other painted components. Do not insulate unpainted steel surfaces.
3. Seal seams and joints to provide a vapor barrier.
4. After adhesive has fully cured, paint exposed surfaces of insulation to match other painted parts.

2.8 ELECTRICAL

A. Factory installed and wired, and functionally tested at factory before shipment.

B. Single-point, field-power connection to fused disconnect switch. Minimum withstand rating shall be as required by electrical power distribution system, but not less than 65,000 A.

1. Branch power circuit to each motor, electric heater, dedicated electrical load, and controls with disconnect switch or circuit breaker.

a. NEMA KS 1, heavy-duty, fusible switch with rejection-type fuse clips rated for fuses. Select and size fuses to provide Type 2 protection according to IEC 60947-4-1.

b. NEMA AB 1, motor-circuit protector (circuit breaker) with field-adjustable, short-circuit-trip set point.

2. NEMA ICS 2-rated motor controller for auxiliary motors, hand-off-auto switch, and overcurrent protection for each motor. Provide variable frequency controller for each variable-speed motor furnished.

3. Control-circuit transformer with primary and secondary side fuses.

C. Terminal blocks with numbered and color-coded wiring to match wiring diagram. Spare wiring terminal block for connection to external controls or equipment.
D. Factory-installed wiring outside of enclosures shall be in metal raceway except make terminal connections with not more than a 24-inch (610-mm) length of liquidtight or flexible metallic conduit.

2.9 VARIABLE FREQUENCY CONTROLLER

A. Motor controller shall be factory mounted and wired on the chiller to provide a single-point, field-power termination to the chiller and its auxiliaries.

B. Description: NEMA ICS 2; listed and labeled as a complete unit and arranged to provide variable speed by adjusting output voltage and frequency.

C. Enclosure: Unit mounted, NEMA 250, Type 12, with hinged full-front access door with lock and key.

D. Integral Disconnecting Means: Door-interlocked, NEMA AB 1, instantaneous-trip circuit breaker with lockable handle. Minimum withstand rating shall be as required by electrical power distribution system, but not less than 65,000 A.

E. Technology: Pulse width modulated (PWM) output with insulated gate bipolar transistors (IGBT); suitable for variable torque loads.

F. Controller shall consist of a rectifier converter section, a digital/analog driver regulator section, and an inverter output section.

1. Rectifier section shall be a full-wave diode bridge that changes fixed-voltage, fixed-frequency, ac line power to a fixed dc voltage. Silicon controller rectifiers, current source inverters, and paralleling of devices are unacceptable. Rectifier shall be insensitive to phase rotation of the ac line.

2. Regulator shall provide full digital control of frequency and voltage.

3. Inverter section shall change fixed dc voltage to variable-frequency, variable ac voltage, for application to a squirrel-cage motor. Inverter shall produce a sine-coded, pulse width modulated (PWM) output wave form and shall conduct no radio-frequency interference back to the input power supply.

G. Output Rating: Three phase; with voltage proportional to frequency throughout voltage range.

H. Operating Requirements:

1. Input AC Voltage Tolerance: 4160-V ac, plus 10 percent.

2. Input frequency tolerance of 60 Hz, plus or minus 2 Hz.

3. Capable of driving full load, without derating, under the following conditions:

 a. Ambient Temperature: 0 to 50 deg C.
 b. Relative Humidity: Up to 90 percent (noncondensing).
 c. Altitude: 5400 feet

4. Minimum Efficiency: 96 percent at 60 Hz, full load.
5. Minimum Displacement Primary-Side Power Factor: 95 percent without harmonic filter, 98 percent with harmonic filter.
6. Overload Capability: 1.05 times the full-load current for 7 seconds.
7. Starting Torque: As required by compressor-drive assembly.
8. Speed Regulation: Plus or minus 1 percent.
9. Isolated control interface to allow controller to follow control signal over a 10:1 speed range.
10. To avoid equipment resonant vibrations, provide critical speed lockout circuitry to allow bands of operating frequency at which controller shall not operate continuously.
11. Capable of being restarted into a motor coasting in either the forward or reverse direction without tripping.

I. Internal Adjustability Capabilities:
1. Minimum Output Frequency: 6 Hz.
2. Maximum Output Frequency: 60 Hz.
3. Acceleration: 2 seconds to a minimum of 60 seconds.
4. Deceleration: 2 seconds to a minimum of 60 seconds.
5. Current Limit: 30 percent to a minimum of 100 percent of maximum rating.

J. Self-Protection and Reliability Features: Subjecting the controller to any of the following conditions shall not result in component failure or the need for replacement:
1. Overtemperature.
2. Short circuit at controller output.
3. Ground fault at controller output. Variable frequency controller shall be able to start a grounded motor.
4. Open circuit at controller output.
5. Input undervoltage.
6. Input overvoltage.
7. Loss of input phase.
8. Reverse phase.
9. AC line switching transients.
10. Instantaneous overload, line to line or line to ground.
11. Sustained overload exceeding 100 percent of controller rated current.
12. Starting a rotating motor.

K. Motor Protection: Controller shall protect motor against overvoltage and undervoltage, phase loss, reverse phase, overcurrent, overtemperature, and ground fault.

L. Automatic Reset and Restart: Capable of three restarts after controller fault or on return of power after an interruption and before shutting down for manual reset or fault correction. Controller shall be capable of automatic restart on phase-loss and overvoltage and undervoltage trips.

M. Visual Indication: On face of controller enclosure or chiller control enclosure; indicating the following conditions:
1. Power on.
2. Run.
3. Overvoltage.
4. Line fault.
5. Overcurrent.
7. Motor speed (percent).
8. Fault or alarm status (code).
9. DC-link voltage.
11. Input kilovolt amperes.
12. Total power factor.
13. Input kilowatts.
15. Three-phase input voltage.
16. Three-phase output voltage.
17. Three-phase input current.
18. Three-phase output current.
19. Three-phase input voltage total harmonic distortion.
20. Three-phase input current total harmonic distortion.
21. Output frequency (Hertz).
22. Elapsed operating time (hours).
23. Diagnostic and service parameters.

N. Operator Interface: At controller or chiller control panel; with start-stop and auto-manual selector with manual-speed-control potentiometer.

O. Control Signal Interface:
 1. Electric Input Signal Interface: A minimum of two analog inputs (0 to 10 V or 0/4-20 mA) and six programmable digital inputs.

P. Active Harmonic Distortion Filter: Factory mounted and wired to limit total voltage and current distortion to 5 percent.

Q. Cooling: Air cooled.

R. Accessories: Devices shall be factory installed in controller enclosure unless otherwise indicated.
 1. Control Relays: Auxiliary and adjustable time-delay relays.

S. Chiller Capacity Control Interface: Equip chiller with adaptive control logic to automatically adjust the compressor motor speed and the compressor pre-rotation inlet vane position independently to achieve maximum part-load efficiency in response to sensor inputs that are integral to the chiller controls.

2.10 CONTROLS

A. Control: Standalone and microprocessor based, with all memory stored in nonvolatile memory so that reprogramming is not required on loss of electrical power.
B. Enclosure: Unit mounted, NEMA 250, Type 1, hinged or lockable; factory wired with a single-point, field-power connection and a separate control circuit.

C. Operator Interface: Multiple-character digital or graphic display with dynamic update of information and with keypad or touch-sensitive display located on front of control enclosure. In either imperial or metric units selectable through the interface, display the following information:

1. Date and time.
2. Operating or alarm status.
3. Fault history with not less than last 10 faults displayed.
4. Set points of controllable parameters.
5. Trend data.
6. Operating hours.
7. Number of chiller starts.
8. Outdoor-air temperature or space temperature if required for chilled-water reset.
10. Difference in fluid temperatures of evaporator and condenser.
11. Fluid flow of evaporator and condenser.
12. Fluid pressure drop of evaporator and condenser.
13. Refrigerant pressures in evaporator and condenser.
14. Refrigerant saturation temperature in evaporator and condenser shell.
15. Compressor refrigerant suction and discharge temperature.
16. Compressor bearing temperature.
17. Motor bearing temperature.
18. Motor winding temperature.
19. Oil temperature.
20. Oil discharge pressure.
22. Percent of motor rated load amperage.
23. Phase voltage.
24. Demand power (kilowatts).
25. Energy use (kilowatt-hours).
27. For chillers equipped with variable frequency controllers and harmonic filters, include the following:

 a. Output voltage and frequency.
 b. Voltage total harmonic distortion for each phase.
 c. Supply current total demand distortion for each phase.
 d. Inlet vane position.
 e. Controller internal ambient temperature.
 f. Heatsink temperature.

28. Purge suction temperature if purge system is provided.
29. Purge elapsed time if purge system is provided.

D. Control Functions:

1. Manual or automatic startup and shutdown time schedule.
2. Entering and leaving chilled-water temperatures, control set points, and motor load limits.
3. Current limit and demand limit.
5. External chiller emergency stop.
6. Variable evaporator flow.

E. Manually Reset Safety Controls: The following conditions shall shut down chiller and require manual reset:

1. Low evaporator pressure or temperature; high condenser pressure.
2. Low evaporator fluid temperature.
3. Low oil differential pressure.
4. High or low oil pressure.
5. High oil temperature.
6. High compressor-discharge temperature.
7. Loss of condenser-fluid flow.
8. Loss of evaporator fluid flow.
10. Motor overvoltage.
12. Motor phase reversal.
15. Processor communication loss.
17. Extended compressor surge.
18. Excessive air-leakage detection for chillers using R-123 refrigerant.

F. Trending: Capability to trend analog data of up to five parameters simultaneously over an adjustable period and frequency of polling.

G. Security Access: Provide electronic security access to controls through identification and password with at least three levels of access: view only; view and operate; and view, operate, and service.

H. Control Authority: At least four conditions: Off, local manual control at chiller, local automatic control at chiller, and automatic control through a remote source.

I. Communication Port: RS-232 port, USB 2.0 port, or equivalent connection capable of connecting a printer and a notebook computer.

J. Interface with DDC System for HVAC: Factory-installed hardware and software to enable the DDC system for HVAC to monitor, control, and display chiller status and alarms.

1. Hardwired Points:
 b. Control: On-off operation.
2. ASHRAE 135 (BACnet) MS/TP communication interface with the DDC system for HVAC shall enable the DDC system for HVAC operator to remotely control and monitor the chiller from an operator workstation. Control features and monitoring points displayed locally at chiller control panel shall be available through the DDC system for HVAC.

2.11 FINISH

A. Paint chiller, using manufacturer's standard procedures, except comply with the following minimum requirements:

1. Provide at least one coat of primer with a total dry film thickness of at least 2 mils.
2. Provide at least two coats of alkyd-modified, vinyl enamel finish with a total dry film thickness of at least 4 mils.
3. Paint surfaces that are to be insulated before applying the insulation.
4. Paint installed insulation to match adjacent uninsulated surfaces.
5. Color of finish coat to be manufacturer's standard.

B. Provide Owner with quart container of paint used in application of topcoat to use in touchup applications after Project Closeout.

2.12 ACCESSORIES

A. Flow Switches:

1. Chiller manufacturer shall furnish a switch for each evaporator and condenser and verify field-mounting location before installation.

2. Pressure Differential Switches:

a. Construction: Wetted parts of body and trim constructed of Type 316 stainless steel.
b. Performance: Switch shall withstand, without damage, the full-pressure rating of the heat exchanger applied to either port and exhibit zero set-point shift due to variation in working pressure.
c. Set Point: Screw type, field adjustable.
d. Electrical Connections: Internally mounted screw-type terminal blocks.
e. Switch Enclosure: NEMA 250, Type 4.
f. Switch Action: Double-pole, double-throw switch with one pole field wired to the chiller control panel and the other pole field wired to the DDC system for HVAC.

B. Vibration Isolation:

1. Chiller manufacturer shall furnish vibration isolation for each chiller.
2. Neoprene Pad:
a. Two layers of 0.375-inch thick, ribbed- or waffle-pattern neoprene pads separated by a 16-gage, stainless-steel plate.

b. Fabricate pads from 40- to 50-durometer neoprene.

c. Provide stainless-steel square bearing plate to load the pad uniformly between 20 and 40 psig with a 0.12- to 0.16-inch deflection.

C. Tool Kit: Chiller manufacturer shall assemble a tool kit specially designed for use in serving the chiller(s) furnished. Include special tools required to service chiller components not readily available to Owner service personnel in performing routine maintenance. Place tools in a lockable case with hinged cover. Provide a list of each tool furnished and attach the list to underside of case cover.

2.13 PACKAGED REFRIGERANT RECOVERY UNITS

A. Packaged, permanently installed unit consisting of compressor, air-cooled condenser, recovery system, tank pressure gages, filter-dryer, and valving and hoses that allow for switching between liquid and vapor recovery mode. Refrigerant recovery unit shall be factory mounted the slab with anchors and installed to accommodate refrigerant cylinder change-out.

2.14 SOURCE QUALITY CONTROL

A. Perform functional run tests of chillers before shipping.

B. Factory performance test chiller, before shipping, according to AHRI 506/110. Provide alternate pricing to test additional chillers up to the full order.

1. Test the following conditions:

 a. Design conditions indicated.

 b. At three point(s) of varying part-load performance to be selected by Owner at time of test.

2. Allow Owner and Engineer access to place where chillers are being tested. Notify parties at least 14 days in advance of testing.

3. Prepare test report indicating test procedures, instrumentation, test conditions, and results. Submit copy of results within one week of test date.

C. For chillers using R-123 refrigerant, factory test and inspect evaporator and condenser according to ASME Boiler and Pressure Vessel Code: Section VIII, Division 1. Pressure test fluid side of heat exchangers, including water boxes, to 1.5 times the rated pressure. Pressure proof test refrigerant side of heat exchangers to a minimum of 45 psig. Vacuum and pressure test for leaks.

D. For chillers located indoors, rate sound power level according to AHRI 575.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine chillers before installation. Reject chillers that are damaged.

B. Examine roughing-in for equipment support, anchor-bolt sizes and locations, piping, and electrical connections to verify actual locations, sizes, and other conditions affecting chiller performance, maintenance, and operations before equipment installation.

1. Final chiller locations indicated on Drawings are approximate. Determine exact locations before roughing-in for piping and electrical connections.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 CHILLER INSTALLATION

A. Install in accordance with manufacturer's instructions.

B. Install chillers on support structure indicated.

C. Equipment Mounting:

1. Install chillers on cast-in-place concrete equipment bases. Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete."

2. Comply with requirements for vibration isolation and seismic control devices specified in Section 230548 "Vibration and Seismic Controls for HVAC."

D. Maintain manufacturer's recommended clearances for service and maintenance.

E. Charge chiller with refrigerant and fill with oil if not factory installed.

F. Install separate devices furnished by manufacturer and not factory installed.

G. Provide connections to chilled water piping per P&ID

3.3 CONNECTIONS

A. Comply with requirements for piping specified in Section 232113 "Hydronic Piping,“ Section 232116 Hydronic Piping Specialties,” and Section 232300 "Refrigerant Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to chiller to allow service and maintenance.

C. Refrigerant Pressure Relief Device Connections: For chillers installed indoors, extend vent piping to the outdoors without valves or restrictions. Comply with ASHRAE 15.
Connect to chiller pressure relief device with flexible connector and dirt leg with drain valve.

D. For chillers equipped with a purge system, extend purge vent piping to the outdoors. Comply with ASHRAE 15 and ASHRAE 147.

E. Connect each chiller drain connection with a union and drain pipe, and extend pipe, full size of connection, to floor drain. Provide a shutoff valve at each connection.

3.4 STARTUP SERVICE

A. Engage a factory-authorized service representative to assist Contractor and perform startup service. Supply service of factory trained representative for a period of at least 3 days per machine to supervise testing, dehydration and charging of machine, start-up, and instruction on operation and maintenance.

1. Complete installation and startup checks according to manufacturer’s written instructions.
2. Verify that refrigerant charge is sufficient and chiller has been leak tested.
3. Verify that pumps are installed and functional.
4. Verify that thermometers and gages are installed.
5. Operate chiller for run-in period.
6. Check bearing lubrication and oil levels.
7. Verify that refrigerant pressure relief device is vented outside.
8. Verify proper motor rotation.
9. Verify static deflection of vibration isolators, including deflection during chiller startup and shutdown.
12. Test and adjust controls and safeties. Replace damaged or malfunctioning controls and equipment.

B. Inspect field-assembled components, equipment installation, and piping and electrical connections for proper assembly, installation, and connection.

C. Prepare test and inspection startup reports.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to assist Contractor and train Owner’s maintenance personnel to adjust, operate, and maintain chillers. Video record the training sessions.

1. Schedule training with Owner, through DEN Project Manager, with at least seven (7) days advance notice.
PART 4 - MEASUREMENT

4.1 METHOD OF MEASUREMENT

A. No separate measurement shall be made for work under this Section.

PART 5 - PAYMENT

5.1 METHOD OF PAYMENT

A. No separate payment will be made for work under this Section. The cost of the work described in this Section shall be included in the Lump Sum Contract price.

END OF SECTION 236416
SECTION 260400 - BASIC ELECTRICAL REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Certain labor, materials, and equipment may be furnished under other Sections of these specifications by utility Companies or by the Owner. When this is the case, the extent, source and description of these items will be as indicated on the drawings or as described in the specifications.

B. Where a panelboard is installed, at least 25% of panel capacity, accounting for serving panel capacity, shall remain as spare capacity after project completion.

C. Where existing panels are used for additional work, when six (6) or less spaces remain a new panel shall be installed.

D. All electrical/electronic circuits, including audio, video and fire alarm systems, shall be in an approved raceway system. No “wild circuits” will be accepted.

E. The Designer of Record shall not design or specify and the Contractor shall not install rigid metal conduit, electrical metallic tubing, liquid-tight flexible steel conduit, non-metallic rigid conduit or innerduct in any horizontal or vertical concrete wall or slab structures or portions thereof, e.g., cast-in-place concrete floor slab on steel decking; cast-in-place concrete slabs integral with concrete structural support systems; prestressed concrete slabs; post-tensioned concrete slabs; precast concrete construction with or without field applied or plant fabricated concrete topping slabs, slabs on grade, foundation walls or in concrete cast-in-place walls, etc.

F. Related Sections:

1. Basic Electrical Requirements specifically applicable to all Division 26 Sections, in addition to Division 1 General Requirements, and Divisions 11, 14, 21, 22, 23, 27 and 28.

2. All electrical/electronic circuits and equipment from any other Division shall meet the requirements of Division 26.

3. Description: Work shall consist of furnishing all labor, equipment, supplies, and materials, unless otherwise specified, necessary for the installation of complete electrical systems as required by the specifications and as shown on the
drawings, subject to the terms and conditions of the Contract. The Work shall also include the completion of those details of electrical work not mentioned or shown which are necessary for the successful operation of all electrical systems.

4. Temporary Power: See Division 1 for construction power constraints.

G. REFERENCE STANDARDS

H. Comply with the requirements of the reference standards noted herein, except where more stringent requirements are listed herein or otherwise required by the Contract Documents.

I. Latest editions of the following:

1. ANSI/NFPA 70 - National Electrical Code (as adopted and amended by the Denver Building Department).
2. International Fire Code (as amended by the Denver Fire Department).
6. OSHA - Occupational Safety and Health Administration, as Amended
7. Underwriter's Laboratory (UL).
9. Other references as listed elsewhere in these specifications.

1.3 DEFINITIONS

A. "Furnish" or "Provide": To supply, install and connect complete and ready for safe and regular operation of particular work unless specifically otherwise noted.

B. "Install": To erect, mount and connect complete with related accessories.

C. "Supply": To purchase, procure, acquire and deliver complete with related accessories.

D. "Work": Labor, materials, equipment, apparatus, controls, accessories, and other items required for proper and complete installation.

E. "Wiring": Raceway, fittings, wire, boxes and related items.

F. "Concealed": Embedded in masonry, concrete or other construction, installed in furred spaces, within double partitions or hung ceilings, in trenches, in crawl spaces, or in enclosures.

G. "Or Equal. Or Approved Equal": Refers to products that, in the opinion of the DEN Project Manager, are similar in all respect to products specified by proprietary brand name. (Refer to Section 01630 for procedures for submittal of proposed substitutions.)
H. "Exposed": Not installed underground or "concealed" as defined above.

I. "Indicated," "Shown" or "Noted": As indicated, shown or noted on drawings or specifications.

J. "Similar" or "Equal": Same in materials, weight, size, design, construction, capacity, performance, and efficiency of specified product.

K. "Reviewed," "Satisfactory," "Accepted," or "Directed": As reviewed, satisfactory, accepted, or directed by or to DEN Project Manager.

L. "Related Work" includes all "Work" required for a complete working system.

M. "Equipment": A general term including material, fittings, devices, appliances, fixtures, apparatus, and the like used as a part of, or in connection with, an electrical installation.

N. "Busbar": A rigid metallic conductor, lug or bar used to make a common connection between more than one circuit. (Includes all termination assemblies.)

O. "Shall": Mandatory requirements of this specification are characterized by the use of the word "shall".

P. Refer to Article 100 of the currently adopted National Electrical Code for other definitions as applicable to this Project.

1.4 WORK SEQUENCE

A. Construct Work in sequence under provisions of Division 1 where applicable.

1.5 DRAWINGS AND SPECIFICATIONS

A. The Drawings indicate the general arrangement of circuits, outlets, panelboards and other work. Information shown on the Drawings is schematic; however, re-circuiting will not be permitted without specific acceptance. In cases of conflict between specifications and drawings, the specification shall have precedence. Data presented on the drawings is as accurate as planning can determine, but accuracy is not guaranteed and field verification of all dimensions, locations, levels, etc., to suit field conditions is required. Review all of the Contract Documents and adjust all work to conform to all conditions shown therein.

B. Prior to submitting a bid, a site visit is required to ascertain all conditions affecting the proposed installation and to adjust all work accordingly. Costs for providing for these adjustments, including response to site constraints, shall be itemized and listed in the bid proposal.

C. Discrepancies between different plans, between plans and specifications, between specifications, or regulations and codes governing this installation shall be brought to the attention of the DEN Project Manager in writing 72 hours before the date of bid
opening. In the event such discrepancies exist, and the DEN Project Manager is not so notified, the adjudication of responsibility shall be solely at the discretion of the DEN Project Manager.

1.6 COORDINATION

A. Prior to fabrication or installation of any electrical work, participate in detailed coordination planning meetings with all other building utilities system trades, under the direction of the General Contractor, so as to completely establish routings, elevations, space requirements, and coordination of access, layout, and suspension requirements in relationship to the building structure and the work of all other trades.

B. Any electrical work penetrating concrete walls or floors shall require saw cutting and/or core drilling and shall require approval by the DEN Project Manager. The Contractor shall perform all necessary imaging (x-rays, etc.) as specified, and submit shop drawings of any saw cutting or core drilling to the DIA Project Manager prior to performing the Work. Refer to Section 017330 "Cutting and Patching" for additional requirements.

C. Any power outages necessary to install or test electrical systems and/or equipment shall be coordinated with Denver International Airport Maintenance/Engineering. A written shutdown request form shall be submitted to and approved by the DEN Project Manager two (2) weeks prior to the shutdown.

1.7 COORDINATION DRAWINGS

A. Where the Contractor modifies the design, through selection of equipment differing from that shown, coordination drawings shall be provided by the Contractor in accordance with Division 1 to a scale of 1/4"=1'0" or larger for equipment rooms, details, congested areas and sections; other plans at a scale of 1/8"=1'0". These drawings are to detail major elements, components, and systems of electrical equipment and materials in relationship with other systems, installations, and building components.

B. Coordination drawings shall be in accordance with current DEN standards for format, and as outlined in Division 1.

C. The Contractor shall indicate locations where space is limited for installation and access and where sequencing and coordination of installations are of importance to the efficient flow of the Work, including (but not necessarily limited to) the following:

1. Indicate the proposed locations of raceway systems, equipment, and materials. Include the following:
 a. Clearances for servicing equipment, including space for equipment disassembly required for periodic maintenance.
 b. Exterior wall and foundation penetrations.
 c. Fire-rated wall and floor penetrations.
d. Equipment connections and support details.

e. Sizes and location of required concrete pads and bases.

f. Support details.

2. Indicate scheduling, sequencing, movement, and positioning of large equipment into the building during construction.

3. Floor plans, elevations, and appropriate details are required to indicate penetrations in floors, walls, and ceilings and their relationship to other penetrations and installations.

1.8 SUBMITTALS

A. Refer to Section 013300 “Submittal Procedures”.

B. Submit shop drawings, coordination drawings and product data in accordance with provisions of Division 1. Submit all required information under a given specification section together. Do not split out submittals under the same specification section.

C. Prior to submission, shop drawings, material lists and catalog cut sheets or manufacturer's printed data shall be thoroughly checked for compliance with Contract requirements, compatibility with equipment being furnished by the Contractor or Owner, accuracy of dimensions, coordination with work of other trades, and conformance with sound and safe practice as to erection of installation. Each submittal shall bear Contractor's signed statement evidencing such checking.

D. Clearly mark each shop drawing as follows for purposes of identification:

1. Shop Drawing.
2. Equipment Identification Used on Contract Drawings.
3. Date.
4. Name of Project.
5. Branch of Work.
6. Project Manager’s Name.
7. Contractor’s Name.

E. Clearly mark printed material, catalog cut sheets, pamphlets or specification sheets, and shop drawings with the same designation shown on the Contract document schedules. Contractor agrees that submittals processed by the DEN Project Manager are not change orders; that the purpose of submittals is to demonstrate to the DEN Project Manager that the Contractor understands the design concept; and that the Contractor demonstrates this understanding by indicating which equipment and material the Contractor intends to furnish and install and by detailing the installation methods the Contractor intends to use.

F. Contractor shall be responsible for dimensions (which the Contractor shall confirm and correlate at the job site), fabrication processes and techniques of construction, and coordination of the Contractor's Work with that of other trades. The Contractor shall check and verify all measurements and review shop drawings before submitting them. If any deviations from the specified requirements for any item of material or equipment
exist, such deviation shall be expressly stated in writing and incorporated with the submittal.

G. Maintain one copy of accepted shop drawings at the Project field office until completion of the Project, and make this copy available, upon request, to representatives of the DEN Project Manager and Owner.

H. No equipment or materials shall be installed or stored at the jobsite until submittals for such equipment or materials have been given review action by the DEN Project Manager accepting their use.

I. Shop drawings and manufacturer's published data shall be submitted for all equipment required for this Project.

1.9 RECORD DOCUMENTS

A. Maintain a Contract set of electrical drawings and specifications at the site. Neatly mark all changes, discoveries and deviations from the original drawings. Use a reproducible color that contrasts with the prints. This shall be a separate set of drawings, not used for construction purposes, and shall be updated daily as the job progresses and shall be made available for inspection by the DEN Project Manager at all times. Upon completion of the Contract, this set of record drawings shall be delivered to the DIA Project Manager. Follow current DEN BIM standards, to be furnished to the successful bidder as well as the project-specific BIM execution plan. Record documents to be provided by the Contractor shall clearly and accurately show the following:

1. Provide horizontal and vertical dimensions for all raceway systems, size and location, for both exterior and interior; locations of control devices; distribution and branch electrical circuitry; and fuse and circuit breaker size and arrangements.
2. Equipment locations (exposed and concealed), dimensioned from prominent building lines.
3. Approved substitutions, Contract Modifications, and actual equipment and materials installed.

1.10 REGULATORY REQUIREMENTS

A. Obtain all permits, plan review, and inspections from authority having jurisdiction.

B. The drawings and specifications take precedence when they are more stringent than codes, statutes, or ordinances in effect. Applicable codes, ordinances, standards and statutes take precedence when they are more stringent than the drawings and specifications.

1.11 ENVIRONMENTAL CONDITIONS

A. The equipment shall be designed and constructed to operate successfully at the rated
values under the following environmental conditions:

1. Location: Indoors/Outdoors.
2. Altitude: 5,500 feet above sea level.
3. Temperature range: -30°F to 120°F.

1.12 WARRANTY

A. The entire electrical system installed under this Contract shall be left in proper working order. Replace, at no additional cost to the Owner, any work, materials, or equipment which evidences defects in design, construction, or workmanship within two (2) years, or any longer period specifically noted elsewhere in these specifications, from date of final acceptance.

PART 2 - PRODUCTS

2.1 MATERIALS AND EQUIPMENT

A. Materials and Equipment: Acceptable to the authority having jurisdiction as suitable for the use intended, except where more stringent requirements are indicated by the Contract Documents.

B. All equipment and materials installed shall be new, unless otherwise specified.

C. Defective or damaged materials shall be replaced or repaired, prior to final acceptance, in a manner acceptable to the DEN Project Manager or Owner and at no additional cost to the Owner.

D. All electrical "equipment" and assemblies shall be acceptable for installation only if labeled and listed by a nationally recognized testing laboratory, such as UL or an equivalent.

E. All major equipment components shall have the manufacturer's name, address, model number, and serial number permanently attached in a conspicuous location.

2.2 STORAGE AND PROTECTION

A. Store products in accordance with manufacturer's instructions, with seals and labels intact and legible. Store sensitive products in weather-tight enclosures; maintain within temperature and humidity ranges required by manufacturer's instructions.

B. For exterior storage of fabricated products, place on sloped supports above ground. Cover products subject to deterioration with impervious sheet covering and provide ventilation to avoid condensation.

C. Arrange storage to provide access for inspection. Periodically inspect to assure products are undamaged and are maintained under required conditions.
2.3 PRODUCT OPTIONS

A. Products Specified by Reference Standards or by Description Only:
 1. Any product meeting those standards.

B. Products Specified by Naming One or More Manufacturers with a Provision for Substitutions:
 1. Submit a request for substitution for any manufacturer not specifically named with supporting documentation for approval by DEN Project Manager.

2.4 PRODUCTS LIST

A. Within fifteen (15) days after date of Notice to Proceed, submit complete list of major products required for submittal under these specifications, with name of manufacturer, trade name, and model number of each product.

2.5 SUBSTITUTIONS

A. Refer to Division 1 General Requirements, Section 012510 "Substitutions".

PART 3 - EXECUTION

3.1 WORKMANSHIP

A. Only quality workmanship will be accepted. Poor workmanship, improper layout of work and lack of coordination of Work, as determined by the DEN Project Manager, are not acceptable and shall be corrected at the contractors cost.

B. Contractor shall include no more than one apprentice per Journeyman Electrician. Apprentices shall be under the direct supervision of a licensed electrician at all times.

C. Any changes or deviations from the drawings and specifications must be accepted in writing by the DEN Project Manager. All errors in installation shall be corrected at the expense of the Contractor. All specialties shall be installed as detailed on the drawings. Where details or specific installation requirements are not provided, manufacturer's recommendations shall be followed.

D. Upon completion of Work, all equipment and materials shall be installed complete, thoroughly tested, checked, correctly adjusted, and left ready for intended use or operation. All Work shall be thoroughly cleaned and all residues shall be removed from surfaces. Exterior surfaces of all material and equipment shall be left in a perfect, unblemished condition.

E. Contractor shall provide a complete installation, including all required labor, material, cartage, testing, insurance, permits, and taxes.
3.2 CHASES, OPENINGS, CUTTING AND PATCHING

A. Carefully lay out all work in advance so as to eliminate where possible, cutting, channeling, chasing, or drilling of floors, walls, partitions, ceilings and roofs. Any damage to the building, structure, piping, ducts, equipment or any defaced finish shall be repaired by skilled mechanics of the trades involved at no additional cost to the Owner and to the satisfaction of the DIA Project Manager. Any necessary cutting, channeling, drilling or welding as required for the proper support, concealment, installation or anchoring of raceways, outlets, or other electrical equipment shall be performed in a careful manner, and shall be pre-approved by the DIA Project Manager.

B. All openings made in fire-rated walls, floors, or ceilings shall be sealed and made tight in a manner to conform to the fire rating for the barrier penetrated. Reference specification Section 078413 "Penetration Firestopping" for additional information.

C. All penetrations required through completed concrete construction shall be core drilled at minimum size required. All penetrations in concrete require an x-ray or ground penetrating radar to determine if the location is clear of reinforcing steel and embedded systems. Precautions shall be taken when drilling to prevent damage to structural concrete.

3.3 ELECTRICAL INSTALLATIONS

A. Coordinate electrical systems, equipment, and material installation with other building components. If the Contractor furnishes equipment of a different size, the Contractor shall furnish and install the proper fuses, circuit breaker, disconnect switch, wire and conduit required for the equipment furnished, at no additional cost to the Owner, and as deemed acceptable by the DEN Project Manager.

3.4 PROGRESS OF WORK

A. Coordinate the progress of electrical work to conform to the progress of the Work of the other trades. Complete the entire installation as soon as the condition of the sites will permit. Any cost resulting from defective or ill-timed work performed under Division 26 shall be borne by the Contractor.

3.5 ELECTRICAL COMPLETION

Training of Operating and Maintenance Personnel: Furnish the services of a qualified representative of the supplier of each item or system itemized below who shall instruct specific personnel, as designated by the Owner, in the operation and maintenance of that item or system. Instruction shall be given when the particular system is complete, shall be of the number of hours indicated, and at the time requested by the Owner. A representative of the Contractor shall be present for all demonstrations.
Systems: Pump Variable Frequency Drives, HGMC-C Switchgear Controls

Hours of Instruction: 4, 2

A. Operating and Maintenance Manuals and Parts Lists: Deliver three (3) complete operating & maintenance manuals and parts lists in three-ring binders to the Owner at the time of the above required training. The information shall be provided on the manufacturer's original data sheets. Fully explain the contents of the manuals as part of required training and instruct the Owner's personnel in the correct procedure in obtaining service, both during and after the guarantee period.

1. The operating and maintenance manuals and parts lists shall give complete information as to whom the Owner shall contact for service and parts. Include address and phone number. Furnish evidence that an authorized service organization regularly carries a complete stock of repair parts for these items (or systems), and that the organization is available for service. Service shall be furnished within 24 hours after requested.

B. Operating and Acceptance Tests: Provide all labor, instruments, and equipment for the performance of tests as specified below and elsewhere in these specifications for all applicable equipment furnished and installed as part of this Contract. Submit three (3) copies of test reports to the DEN Project Manager for the DEN Project Manager's approval.

C. Clean Up: Remove all materials, scrap, etc., relative to the electrical installation, and leave the premises and all equipment, lamps, fixtures, etc. in a clean, orderly condition. Clean all electrical equipment, such as switchboards, panel boards, luminaries etc. of construction dirt, dust, etc. and touch-up or repaint all scratches, blemishes, rust spots etc. to its original condition. Any costs to the Owner for cleanup of the site will be charged against the Contractor.

D. Acceptance Demonstration: Upon completion of the Work, at a time to be designated by the DEN Project Manager, the Contractor shall demonstrate for the Owner the operation of the entire installation, including all systems provided or modified under this Contract.

E. Final Acceptance by the Owner will not occur until all operating instructions are received and Owner’s personnel have been thoroughly indoctrinated in the maintenance and operation of all equipment, as approved by DEN Project Manager.

PART 4 - MEASUREMENT

4.1 METHOD OF MEASUREMENT

A. No separate measurement shall be made for work under this Section.
PART 5 - PAYMENT

5.1 METHOD OF PAYMENT

A. No separate payment will be made for work under this Section. The cost of the work described in this Section shall be included in the Lump Sum Contract price.

END OF SECTION 260400
SECTION 260510 - TESTING, ACCEPTANCES AND CERTIFICATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY OF REQUIREMENTS

A. The Contractor shall provide the necessary field-testing and startup services for all electrical and mechanical equipment except as noted otherwise. The field-testing and startup services shall be in accordance with each equipment manufacturer’s written recommendations for field-testing proving they meet Contract standards.

B. The Contractor shall be responsible for furnishing all equipment, power source when needed, coordinating and performing electrical/electronic testing required by the Contract Documents. Testing requirements may be located on the Contract Drawings or other sections of the specifications.

C. The Contractor shall provide all necessary assistance and cooperation with any Independent Testing Organization furnishing by the City. The Contractor shall correct, repair or replace all equipment found to be defective by the Independent Testing Organization.

1.3 REFERENCE SPECIFICATIONS, CODES AND STANDARDS

A. Without limiting the generality of other requirements of these Specifications, all Work specified herein shall conform to or exceed the applicable requirements of the referenced Standards; provided, that wherever the provisions of said publications are in conflict with the requirements specified herein, the more stringent requirements shall apply unless in conflict with the equipment manufacturer’s written recommendations:

3. OSHA - Occupational Safety and Health Administration, as Amended
4. NETA - National Electric Testing Association
5. NEMA ICS 1 - General Standards for Industrial Control and Systems.
6. NEMA ICS 2 - Standards for Industrial Control Devices, Controllers, and Assemblies.
7. NEMA ICS 6 - Enclosures for Industrial Controls and Systems.
8. UL 1008 - Standard for Automatic Transfer Switches.
9. NFPA 70 - National Electrical Code, including but not limited to use in emergency and standby systems in accordance with Articles 517, 700, 701 and 702.
15. IEC - Standard for Automatic Transfer Switches.

1.4 SUBMITTALS

A. Comply with Division 1 submittal requirements.

B. Five (5) copies of complete certified test reports shall be submitted to the DEN Project Manager by the contractor. Electronic copy of test reports in pdf format to also be submitted to the DEN Project Manager. The test reports shall include the following as a minimum:

1. Power cable high potential test reports:
 a. Insulation resistance tests.
 b. Continuity tests.

2. All electrical/electronic equipment and systems functional test report.
3. All other reports required by individual specification sections.
4. Load balance report for each switch board, panel board and switch gear.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

A. The electrical and mechanical equipment shall be completely tested in the field in the presence of DEN Inspectors in accordance with good and accepted industry engineering practices to assure that:

1. The equipment has not been damaged during manufacturing, shipping or installation.
2. The equipment has been installed according to the requirements Contract Documents.
3. The equipment meets the requirements of the Contract Documents.

B. If the Contractor finds during the testing that any piece of equipment failed to satisfactorily pass the required field test, the DEN Project Manager shall be promptly notified and the Contractor shall take the necessary actions for the prompt repair of replacement.
C. A retest to demonstrate the equipment will meet the requirements of the Contract Documents shall be scheduled with the DEN Project Manager.

2.2 CHILLERS

A. Test the operation of all pumps and valve actuators.

2.3 Test the Pump variable frequency drives. GROUND RESISTANCE TEST

A. Before connecting a ground rod to the system test the resistance to earth. Where test show resistance to ground over 5 OHMS, an additional ground rod shall be added.

B. Upon completion of installation of electrical grounding system, test ground resistance to earth in accordance with ANSI/IEEE81. Submit test results to the DIA Project Manager.

2.4 CONDUCTOR INSULATION TEST

A. Prior to energizing, all feeders from Motor Control Center and panel boards are to be tested with a 1000-volt insulation megohm meter to determine insulation resistance levels. All field test data shall be recorded, corrected to a baseline temperature and furnished to the DEN Project Manager. Testing shall include meggering between conductors and between each conductor and ground. Cables shall be meggered after installation with cables disconnected at both ends. Insulation test values shall meet or exceed the values given below:

<table>
<thead>
<tr>
<th>Conductor Size: (AWG or KCMIL)</th>
<th>Resistance: (Megaohms - 1,000 ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-8</td>
<td>200</td>
</tr>
<tr>
<td>6-2/0</td>
<td>100</td>
</tr>
<tr>
<td>3/0-750</td>
<td>100</td>
</tr>
</tbody>
</table>

PART 3 - EXECUTION

3.1 FIELD QUALITY CONTROL

A. TESTING

1. The Contractor shall allow only certified personnel to perform the testing.
2. The Contractor shall perform the testing using all necessary safety precautions and proper test equipment.
3. The Contractor shall notify the DEN Project Manager three (3) days in advance of the proposed testing dates.
PART 4 - MEASUREMENT

4.1 METHOD OF MEASUREMENT

A. No separate measurement shall be made for work under this Section.

PART 5 - PAYMENT

5.1 METHOD OF PAYMENT

A. No separate payment will be made for work under this Section. The cost of the work described in this Section shall be included in the Lump Sum Contract price.

END OF SECTION 260510
SECTION 260513 - MEDIUM-VOLTAGE CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes cables and related cable splices, terminations, and accessories for medium-voltage (2001 to 35,000 V) electrical distribution systems.
 B. Alternates: Refer to Division 01 Section 012300 "Alternates" for description of Work in this Section affected by alternates.

1.3 DEFINITIONS
 A. Jacket: A continuous nonmetallic outer covering for conductors or cables.
 C. Sheath: A continuous metallic covering for conductors or cables.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of cable. Include splices and terminations for cables and cable accessories.
 B. Samples: 16-inch (400-mm) lengths for each type of cable specified.

1.5 INFORMATIONAL SUBMITTALS
 A. Qualification Data: For installer.
 B. Material Certificates: For each type of cable and accessory, signed by manufacturers.
 C. Source quality-control reports.
 D. Field quality-control reports.
 E. Torque Values: Submit torque values for all connections with a torque schedule and witness signature.
1.6 CLOSEOUT SUBMITTALS

A. As-Built Plans: Submit complete as-built plans of all Work, including interface with other Work, in accordance with requirements as specified in Section 013300 "Submittal Procedures".

1.7 QUALITY ASSURANCE

A. Installer: Engage a cable splicer, trained and certified by splice material manufacturer, to install, splice, and terminate medium-voltage cable.

B. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.

C. Source Limitations: Obtain cables and accessories through one source from a single manufacturer.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

E. Comply with IEEE C2 and NFPA 70.

1.8 PROJECT CONDITIONS

A. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated.

B. Any power outages necessary to install or test electrical systems and/or equipment shall be coordinated with Denver International Airport Maintenance/Engineering. A written shutdown request form shall be submitted to and approved by the DEN Project Manager two (2) weeks prior to the shutdown. Do not proceed with interruption of electric service without Owner’s written permission.

C. Any electrical work penetrating concrete walls or floors shall require saw cutting and/or core drilling and shall require approval by the DEN Project Manager. The contractor shall submit shop drawings of any saw cutting or core drilling to the DEN Project Manager prior to performing the work. Refer to Section 033000 "Cast-In-Place Concrete" for cutting and patching work.

D. CONSTRUCTION WASTE MANAGEMENT

1. Construction waste shall be managed in accordance with provisions of Section 017419 "Construction Waste Management and Disposal". Documentation shall
be submitted to satisfy the requirements of that Section.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Cables:
 a. General Cable Technologies Corporation.
 b. Kerite Co. (The); Hubbell Incorporated.
 c. Okonite Company (The).
 d. Pirelli Cables & Systems NA.
 e. Southwire Company.

2. Cable Splicing and Terminating Products and Accessories:
 a. Engineered Products Company.
 c. MPHusky.
 d. Raychem Corp.; Telephone Energy and Industrial Division; Tyco International Ltd.
 e. RTE Components; Cooper Power Systems, Inc.
 f. Scott Fetzer Co. (The); Adalet.
 g. Thomas & Betts Corporation.
 h. Thomas & Betts Corporation/Elastimold.
 i. 3M; Electrical Products Division.

2.2 CABLES

A. Cable Type: MV105.

C. Conductor: Copper. Aluminum may be acceptable only on approval by the Owner in consideration of a cost deduction and the verification of applicable lug ratings.

D. Conductor Stranding: Compact round, concentric lay, Class B.

E. Strand Filling: Conductor interstices are filled with impermeable compound.

F. Conductor Insulation: Crosslinked polyethylene.

G. Conductor Insulation: Ethylene-propylene rubber.

 1. Voltage Rating: 8 kV.
2. Insulation Thickness: 133 percent insulation level.

H. Shielding: Copper tape, helically applied over semiconducting insulation shield.

I. Jacket: Extruded, chlorinated, polyethylene jacket.

1. Circuit Identification: Color-coded tape (black, red, blue) under the metallic shielding.

2.3 SPLICE KITS

A. Connectors and Splice Kits: Comply with IEEE 404; type as recommended by cable or splicing kit manufacturer for the application.

B. Splicing Products: As recommended, in writing, by splicing kit manufacturer for specific sizes, ratings, and configurations of cable conductors. Include all components required for complete splice, with detailed instructions.

2. Pre-molded, cold-shrink-rubber, in-line splicing kit.
3. Pre-molded EPDM splicing body kit with cable joint sealed by interference fit of mating parts and cable.

2.4 SOLID TERMINATIONS

1. Multiconductor Cable Sheath Seals: Type recommended by seal manufacturer for type of cable and installation conditions, including orientation.
2. Cold-shrink sheath seal kit with preformed sleeve openings sized for cable and insulated conductors.
3. Heat-shrink sheath seal kit with phase- and ground-conductor re-jacketing tubes, cable-end sealing boot, and sealing plugs for unused ground-wire openings in boot.
4. Cast-epoxy-resin sheath seal kit with wraparound mold and packaged, two-part, epoxy-resin casting material.

B. Shielded-Cable Terminations: Comply with the following classes of IEEE 48. Insulation class shall be equivalent to that of cable. Include shield ground strap for shielded cable terminations.

1. Class 1 Terminations: Modular type, furnished as a kit, with stress-relief tube; multiple, molded-silicone-rubber, insulator modules; shield ground strap; and compression-type connector.
2. Class 1 Terminations: Heat-shrink type with heat-shrink inner stress control and outer nontracking tubes; multiple, molded, nontracking skirt modules; and compression-type connector.
3. Class 1 Terminations: Modular type, furnished as a kit, with stress-relief shield terminator; multiple-wet-process, porcelain, insulator modules; shield ground strap; and compression-type connector.
4. Class 1 Terminations, Indoors: Kit with stress-relief tube, nontracking insulator tube, shield ground strap, compression-type connector, and end seal.
5. Class 2 Terminations, Indoors: Kit with stress-relief tube, nontracking insulator tube, shield ground strap, and compression-type connector. Include silicone-rubber tape; cold-shrink-rubber sleeve; or heat-shrink, plastic-sleeve moisture seal for end of insulation whether or not supplied with kits.
6. Class 3 Terminations: Kit with stress cone and compression-type connector.

2.5 ARC-PROOFING MATERIALS

A. Tape for First Course on Metal Objects: 10-mil- (250-micrometer-) thick, corrosion-protective, moisture-resistant, PVC pipe-wrapping tape.
B. Arc-Proofing Tape: Fireproof tape, flexible, conformable, intumescent to 0.3 inch (8 mm) thick, and compatible with cable jacket.
C. Glass-Cloth Tape: Pressure-sensitive adhesive type, 1 inch (25 mm) wide.

2.6 SOURCE QUALITY CONTROL

A. Test and inspect cables according to ICEA S-97-682 before shipping.
B. Test strand-filled cables for water-penetration resistance according to ICEA T-31-610, using a test pressure of 5 psig (35 kPa).

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install cables according to IEEE 576.
B. Determine required separation between wiring and other work.
C. Determine routing to avoid interference with other work.
D. Minimum wire size shall be based on the over current protection device and as governed by the NEC.
E. Place an equal number of conductors for each phase in the same raceway.
F. Install all medium-voltage cables in Galvanized Rigid Steel conduit.
G. Pull Conductors: Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
 1. Where necessary, use manufacturer-approved pulling compound or lubricant that will not deteriorate conductor or insulation.
2. Use pulling means, including fish tape, cable, rope, and basket-weave cable grips that will not damage cables and raceways. Do not use rope hitches for pulling attachment to cable. Use pull-in guides, cable feeders, and draw-in protectors as required to protect cables during installation.

3. Pulling winches and other necessary pulling equipment shall be of adequate capacity to ensure a continuous pull on the cable. Strain gages shall be used to monitor the cable pulling tension.

4. Do not pull cables with ends unsealed. Seal cable ends with rubber tape.

5. Pull all conductors into a raceway at the same time.

6. Install wire in raceway after interior of building has been physically protected from the weather and all mechanical work likely to injure conductors has been completed.

H. Neatly train and lace wiring inside boxes, equipment, and panel boards. Make temporary connections to panel board devices with sufficient slack conductor to facilitate reconnections required for balancing loads between phases.

I. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."

J. All building wire and cable shall be installed in an approved raceway.

K. All buried conduits containing medium-voltage cabling shall be installed in concrete encased duct banks.

L. In manholes, handholes, pull boxes, junction boxes, and cable vaults, train cables around walls by the longest route from entry to exit and support cables at intervals adequate to prevent sag.

M. Install cable splices at pull points and elsewhere as indicated; use standard kits.

N. Install terminations at ends of conductors and seal multiconductor cable ends with standard kits.

O. Install separable insulated-connector components as follows:

1. Protective Cap: At each terminal junction, with one on each terminal to which no feeder is indicated to be connected.

P. Seal around cables passing through fire-rated elements according to Section 078413 "Penetration Firestopping."

Q. Ground shields of shielded cable at terminations, splices, and separable insulated connectors. Ground metal bodies of terminators, splices, cable and separable insulated-connector fittings, and hardware.

R. Identify cables according to Section 260553 "Identification for Electrical Systems."
3.2 FIELD QUALITY CONTROL

A. Perform the following field tests and inspections and prepare test reports:

1. Perform each visual and mechanical inspection and electrical test stated in NETA ATS. Certify compliance with test parameters.
2. Field inspection and testing will be performed under provisions of Division 01.
3. Inspect wire and cable for physical damage and proper connection.
4. Torque conductor connections and terminations to manufacturer’s recommended values. Submit torque values for all connections with a torque schedule and witness signature.
5. After installing medium-voltage cables and before electrical circuitry has been energized, test for compliance with requirements.
6. Perform continuity test on all feeder and branch circuit conductors. Verify proper phasing connections.
7. Verify cables are colored coded and labeled according to contract documents.
8. Perform direct-current High Potential test of each new conductor according to NETA ATS, Ch. 7.3.3. Do not exceed cable manufacturer’s recommended maximum test voltage.
9. Perform Partial Discharge test of each new conductor according to NETA ATS, Ch. 7.3.3 and to test equipment manufacturer’s recommendations.
10. Perform Dissipation Factor test of each new conductor according to NETA ATS, Ch. 7.3.3 and to test equipment manufacturer’s recommendations.
11. Medium-voltage cables will be considered defective if they do not pass tests and inspections.
12. Prepare test and inspection reports.

PART 4 - MEASUREMENT

4.1 METHOD OF MEASUREMENT

A. No separate measurement shall be made for work under this Section.

PART 5 - PAYMENT

5.1 METHOD OF PAYMENT

A. No separate payment will be made for work under this Section. The cost of the work described in this Section shall be included in the Lump Sum Contract price.

END OF SECTION 260513
SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Building wires and cables rated 600 V and less.
2. Connectors, splices, and terminations rated 600 V and less.

B. Alternates: Refer to Division 01 Section 012300 "Alternates" for description of Work in this Section affected by Alternates.

1.3 DEFINITIONS

A. EPDM: Ethylene-propylene-diene terpolymer rubber.

B. NBR: Acrylonitrile-butadiene rubber.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1. Include data substantiating that materials comply with requirements.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing agency.

B. Field quality-control test reports.

1.6 CLOSEOUT SUBMITTALS

A. As-Built Plans: Submit complete as-built plans of all Work, including interface with other Work, in accordance with requirements as specified in Section 013300 "Submittal Procedures".
1.7 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. Comply with NFPA 70.

1.8 CONSTRUCTION WASTE MANAGEMENT

A. Construction waste shall be managed in accordance with provisions of Section 017419 "Construction Waste Management and Disposal". Documentation shall be submitted to satisfy the requirements of that Section.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. General Cable Corporation.
4. Encore Wire Corp.
5. Cerro Wire and Cable Company.
6. CME Wire.
7. Coleman Cable Inc.
8. or approved equal.

B. All conductors shall be copper.

C. AC cable and Modular wiring are not permitted.

D. Copper Conductors: Comply with NEMA WC 70.

E. Conductor Insulation: Comply with NEMA WC 70 for Types XHHW.

F. Remote Control and Signal Cable

1. Control Cable for Class 1 Remote Control and Signal Circuits: Copper conductor, 600 volt insulation, rated at 60 deg C, individual conductors twisted together, shielded, and covered with a PVC jacket.
2. Control Cable for Class 2 or Class 3 Remote Control and Signal Circuits: Copper conductor, individual conductors twisted together, shielded, and covered with a PVC jacket; UL listed.
2.2 CONNECTORS AND SPLICES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. AFC Cable Systems, Inc.
3. O-Z/Gedney; EGS Electrical Group LLC.
4. 3M; Electrical Products Division.
5. Tyco Electronics Corp.
6. Ideal
7. or approved equal.

B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders: Copper. Solid for No. 12 AWG and smaller; stranded for No. 10 AWG and larger.

B. Branch Circuits: Copper. Solid for No. 12 AWG and smaller; stranded for No. 10 AWG and larger, except for connection to vibrating equipment then stranded shall be used.

C. Prohibited Cable Types: UF, NM, SE, AC.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

A. Minimum wire size shall be based on the over current protection device and as governed by the NEC.

B. Exposed Feeders: Type XHHW, single conductors in raceway.

C. Exposed Branch Circuits, Including in Crawlspace: Type THHN-THWN, single conductors in raceway.

D. Class 1 Remote Control and Signal Circuits: Type THHN-THWN, in raceway or cable tray as applicable, or Copper conductor, 600 volt insulation, individual conductors twisted together, shielded, and covered with a PVC jacket.

E. Class 2 Remote Control and Signal Circuits: Type THHN-THWN, in raceway or cable tray as applicable, or Copper conductor, individual conductors twisted together, shielded, and covered with a PVC jacket; UL listed.

F. All power, control, data, communication and signal wire or cable shall be installed in an
approved raceway.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. All power, control, data, communication and signal wire or cable shall be installed in an approved raceway (raceway shall be defined as conduit.

B. Verify raceways are open, continuous and clear of debris before installing cables.

C. Pull all conductors into a raceway at the same time. Use a listed wire pulling lubricant for pulling No. 4 AWG and larger wires.

D. Completely and thoroughly swab raceway system before installing conductors for conduit in floors, concrete, or below grade.

E. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

F. Install wire in raceway after interior of building has been physically protected from the weather and all mechanical work likely to injure conductors has been completed.

G. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

H. Pulling winches and other necessary pulling equipment shall be of adequate capacity to ensure a continuous pull on the cable. Strain gages shall be used to monitor the cable pulling tension.

I. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

J. Neatly train wiring inside boxes, equipment, and panel boards. Make temporary connections to panel board devices with sufficient slack conductor to facilitate reconnections required for balancing loads between phases.

K. Support cables according to Division 26 Section "Hangers and Supports for Electrical Systems."

L. For connection to vibrating equipment, stranded wire shall be used.

M. All wiring shall be installed in a new approved raceway system. Existing conduits shall not be used unless approved by the DEN Project Manager.

N. Shared Neutrals: Prohibited. A full-size neutral conductor shall be provided for each single-phase circuit.
3.4 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

B. Splice only in accessible junction and outlet boxes.

C. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.

3.5 IDENTIFICATION

A. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."

B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.

3.6 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Division 07 Section "Penetration Firestopping."

3.7 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.

1. Field inspection and testing will be performed under provisions of Division 01.

2. After installing conductors and cables and before electrical circuitry has been energized, test conductors feeding the following critical equipment and services for compliance with requirements.

 a. Prior to energizing, feeders to and/or from transformers, switchboards and panel boards are to be tested with a 500-volt insulation megohm meter to determine insulation resistance levels. All field test data is to be recorded, corrected to a baseline temperature and furnished to the DEN Project Manager. A test is to include meggering for one minute between conductors and between each conductor and ground. Cables are to be meggered after installation with cables disconnected at both ends. Insulation test values shall meet or exceed the values given below.

<table>
<thead>
<tr>
<th>Conductor Size (AWG or KCMIL)</th>
<th>Resistance (Megaohms-1,000ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-8</td>
<td>200</td>
</tr>
<tr>
<td>6-2/0</td>
<td>100</td>
</tr>
<tr>
<td>3/0-750</td>
<td>100</td>
</tr>
</tbody>
</table>
3. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each splice in cables and conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner.

a. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each splice eleven (11) months after date of Substantial Completion.

b. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

c. Record of Infrared Scanning: Prepare a certified report that identifies splices checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

4. Inspect wire and cable for physical damage and proper connection.

B. Test and Inspection Reports: Prepare a written report to record the following:

1. Test procedures used.
2. Test results that comply with requirements.
3. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

C. Remove and replace malfunctioning units and retest as specified above.

D. Cables will be considered defective if they do not pass tests and inspections.

PART 4 - MEASUREMENT

4.1 METHOD OF MEASUREMENT

A. No separate measurement shall be made for work under this Section.

PART 5 - PAYMENT

5.1 PAYMENT

A. No separate payment will be made for work under this Section. The cost of the work described in this Section shall be included in the Lump Sum Contract price.
SECTION 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes: Grounding systems and equipment.

B. Alternates: Refer to Division 01 Section 012300 "Alternates" for description of Work in this Section affected by alternates.

1.3 SYSTEM DESCRIPTION

A. Ground the electrical service system neutral at service entrance equipment to the metallic water pipe service on building side only and to supplementary grounding electrodes, as required by the contract documents and as required by the NEC.

B. External (underground) metal pipes, water, gas, fuel, drain/sewer etc., are not available for electrical grounding. This is due to extensive cathodic protection and isolation joints of all underground metal pipes at DEN. These systems shall be bonded to the grounding system on the building side only.

C. Ground each separately derived system neutral to nearest building steel or referenced ground plate in the electrical room.

D. Provide a minimum of three inch by twelve inch by one-quarter inch (3" x 12" x ¼") copper ground bar in the electrical room for connecting the grounding systems.

E. An insulated equipment ground conductor shall be installed continuous from the main switchgear or service entrance to all branch panelboards, motor control centers, transformers and all motors. This conductor shall be bonded to the conduit and metal enclosures that it passes through utilizing bonding bushings and terminal devices.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1. Include data substantiating that materials comply with requirements.
B. Shop Drawings:

C. Submit shop drawings, coordination drawings and product data in accordance with provisions of Division 1. Submit all required information under a given specification section together. Do not split out submittals under the same specification section.

D. Clearly mark each shop drawing as follows for purposes of identification:

E. Shop Drawing

F. Equipment Identification Used on Contract Drawings

G. Date

H. Name of Project

I. Branch of Work

J. Project Manager’s Name

K. Contractor’s Name

L. Indicate layout of ground ring, location of system grounding electrode connections, and routing of grounding electrode conductors.

M. Prior to submission, shop drawings, material lists and catalog cut sheets or manufacturer's printed data shall be thoroughly checked for compliance with contract requirements, compatibility with equipment being furnished by the Contractor or Owner, accuracy of dimensions, coordination with work of other trades, and conformance with sound and safe practice as to erection of installation. Each submittal shall bear Contractor's signed statement evidencing such checking.

N. Clearly mark printed material, catalog cut sheets, pamphlets or specification sheets, and shop drawings with the same designation shown on the Contract Document schedules.

1.5 INFORMATIONAL SUBMITTALS

A. Informational Submittals: Plans showing dimensioned as-built locations of grounding features specified in “Field Quality Control” Article, including the following:

1. Ground rods.
2. Grounding for Variable Frequency Drives.

B. Qualification Data: For qualified testing agency and testing agency’s field supervisor.

C. Field quality-control reports.
1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:

1. Include recommended testing intervals.

B. Record Documents

1. Maintain a contract set of electrical drawings and specifications at the site. Neatly mark all changes, discoveries and deviations from the original drawings. Use a reproducible color that contrasts with the prints. This shall be a separate set of drawings, not used for construction purposes, and shall be updated daily as the job progresses and shall be made available for inspection by the DEN Project Manager at all times. Upon completion of the contract, this set of record drawings shall be delivered to the DEN Project Manager. Follow DEN CADD standards, to be furnished to the successful bidder. Record documents to be provided by the Contractor shall clearly and accurately show the following:

a. Provide horizontal and vertical dimensions for all raceway systems, size and location, for both exterior and interior; locations of control devices; distribution and branch electrical circuitry; and fuse and circuit breaker size and arrangements.

b. Equipment locations (exposed and concealed), dimensioned from prominent building lines.

c. Approved substitutions, Contract Modifications, and actual equipment and materials installed.

1.7 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with UL 467 for grounding and bonding materials and equipment.

1.8 CONSTRUCTION WASTE MANAGEMENT

A. Construction waste shall be managed in accordance with provisions of Section 017419 "Construction Waste Management and Disposal". Documentation shall be submitted to satisfy the requirements of that Section.
2.1 CONDUCTORS

A. Insulated Conductors: Copper or tinned-copper wire or cable insulated for 600 V unless otherwise required by applicable Codes.

B. All ground wires shall be copper, sized according to the NEC or as shown on the drawings which ever is larger.

C. Bare Copper Conductors:
 4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch (6 mm) in diameter.
 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.
 7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.

D. Grounding Bus: As provided by manufacturer in switchgear.

2.2 CONNECTORS

A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.

B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, pressure type with at least two bolts.
 1. Pipe Connectors: Clamp type, sized for pipe.

C. Bus-bar Connectors: Mechanical type, cast silicon bronze, solderless compression exothermic-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.

D. Grounding Connection Accessories:
 1. Electrical insulating tape, heat-shrinkable insulating tubing, welding materials, bonding straps, as recommended by accessories manufacturers for type of service required.
PART 3 - GROUNDING ELECTRODES

A. Copper-clad steel ground rods. Sectional rods are used when electrodes longer than 10 feet (3 m) are required.

B. Ground Rods: Copper-clad; 3/4 inch diameter by 10 feet

C. Termination: Factory-attached No. 4/0 AWG bare conductor at least 48 inches (1200 mm) long.

PART 3 EXECUTION

3.2 APPLICATIONS

A. Conductors: Install solid conductor for No. 12 AWG and smaller, and stranded conductors for No. 10 AWG and larger unless otherwise indicated.

B. Conductor Terminations and Connections:
 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.

3.3 EQUIPMENT GROUNDING

A. Install insulated equipment grounding conductors with all feeders and branch circuits.

B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:
 1. Feeders and branch circuits.
 2. Three-phase motor and appliance branch circuits.
 3. Flexible raceway runs.
 4. Busway Supply Circuits: Install insulated equipment grounding conductor from grounding bus in the switchgear, switchboard, or distribution panel to equipment grounding bar terminal on busway.

C. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with a nonmetallic raceway fitting listed for the purpose. Install fitting where raceway enters enclosure, and install a separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.
3.4 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

B. Grounding and Bonding for Piping:
 1. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.

C. Retain and revise first paragraph below to exceed NFPA 70 requirements, and comply with NFPA 70 recommendations for a higher standard of safety or electromagnetic interference suppression if needed.

D. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install bonding jumper to bond across flexible duct connections to achieve continuity.

3.5 LABELING

A. Comply with requirements in Section 260553 "Identification for Electrical Systems" Article for instruction signs.

3.6 FIELD QUALITY CONTROL

A. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:
 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
 3. Test completed grounding system at each location where a maximum ground-resistance level is specified.
 4. Measure ground resistance.

C. Grounding system will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

E. Report measured ground resistances that exceed the following values:
 1. Power Distribution Units Switchboards – 3 ohms.
F. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify DEN Electrical Engineer promptly and include recommendations to reduce ground resistance.

PART 4 - MEASUREMENT

4.1 METHOD OF MEASUREMENT

A. No separate measurement shall be made for work under this Section.

PART 5 - PAYMENT

5.1 PAYMENT

A. No separate payment will be made for work under this Section. The cost of the work described in this Section shall be included in the Lump Sum Contract price.

END OF SECTION 260526
SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Hangers and supports for electrical equipment and systems.

B. Related Sections include the following:
 1. Division 26 Section "Vibration and Seismic Controls for Electrical Systems" for products and installation requirements necessary for compliance with seismic criteria.

C. Alternates: Refer to Division 01 Section 012300 "Alternates" for description of Work in this Section affected by alternates.

1.3 DEFINITIONS

A. EMT: Electrical metallic tubing.

B. RMC: Rigid metal conduit.

1.4 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design supports for multiple raceways, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Design supports for multiple raceways capable of supporting combined weight of supported systems and its contents.

C. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

D. Rated Strength: Adequate in tension, shear, and pullout force.
1.5 ACTION SUBMITTALS

A. Product Data: For the following:
 1. Steel slotted support systems.
 2. Nonmetallic slotted support systems.
 3. Include data substantiating that materials comply with requirements.

B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following:
 1. Trapeze hangers. Include Product Data for components.
 2. Steel slotted channel systems. Include Product Data for components.
 3. Nonmetallic slotted channel systems. Include Product Data for components.
 4. Equipment supports.

1.6 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.7 CLOSEOUT SUBMITTALS

A. As-Built Plans: Submit complete as-built plans of all Work, including interface with other Work, in accordance with requirements as specified in Section 013300 "Submittal Procedures".

1.8 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Comply with NFPA 70.

C. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories."

1.9 CONSTRUCTION WASTE MANAGEMENT

A. Construction waste shall be managed in accordance with provisions of Section 017419 "Construction Waste Management and Disposal". Documentation shall be submitted to satisfy the requirements of that Section.
PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.; a division of Cooper Industries.
 c. ERICO International Corporation.
 d. GS Metals Corp.
 e. Thomas & Betts Corporation.
 f. Unistrut; Tyco International, Ltd.
 2. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
 3. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
 4. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4. For use in dry locations only.
 5. Channel Dimensions: Selected for applicable load criteria.

B. Nonmetallic Slotted Support Systems: Structural-grade, factory-formed, glass-fiber-resin channels and angles with 9/16-inch (14-mm) diameter holes at a maximum of 8 inches (200 mm) o.c., in at least 1 surface.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.; a division of Cooper Industries.
 c. Fabco Plastics Wholesale Limited.
 d. Seasafe, Inc.
 e. or approved equal.
 2. Fittings and Accessories: Products of channel and angle manufacturer and designed for use with those items.
 3. Fitting and Accessory Materials: Same as channels and angles, except metal items may be stainless steel.
 4. Rated Strength: Selected to suit applicable load criteria.

C. Hardware for hangers and supports shall be corrosion-resistant.

D. Raceway and Cable Supports: As described in NECA 1 and NECA 101.

E. Conduit and Cable Support Devices: Steel and malleable-iron hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.
F. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron.

G. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

H. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:

1. Mechanical-Expansion Anchors: Insert-wedge-type, stainless steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.

 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1) Cooper B-Line, Inc.; a division of Cooper Industries.
 2) Empire Tool and Manufacturing Co., Inc.
 3) Hilti Inc.
 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 5) MKT Fastening, LLC.
 6) or approved equal.

2. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.

3. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.

4. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.

5. Toggle Bolts: All-steel springhead type.

7. Pneumatic-Actuated Fasteners: For use in ceilings only and by approval of DEN Project Manager. Powder-actuated tools are prohibited. Threaded-steel stud, for use in pan deck cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.

 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1) Hilti Inc.
 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 3) MKT Fastening, LLC.
 4) Simpson Strong-Tie Co., Inc.; Masterset Fastening Systems Unit.
 5) or approved equal.
2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

B. Materials: Comply with requirements in Division 05 Section "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.

B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as scheduled in NECA 1, where its Table 1 lists maximum spacings less than stated in NFPA 70. Minimum rod size shall be 1/4 inch (6 mm) in diameter.

C. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least [25] percent in future without exceeding specified design load limits.

1. Secure raceways and cables to these supports with [single-bolt conduit clamps using spring friction action for retention in support channel].

D. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch (38-mm) and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.

B. Raceway Support Methods: In addition to methods described in NECA 1, EMT and RMC may be supported by openings through structure members, as permitted in NFPA 70.

C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb (90 kg).

D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the
following methods unless otherwise indicated by code:

1. To Wood: Fasten with lag screws or through bolts.
2. To New Concrete: Bolt to concrete inserts.
3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
4. To Existing Concrete: Expansion anchor fasteners.
5. To Steel: Beam clamps (MSS Type 19, 21, 23, 25, or 27) complying with MSS SP-69 or Spring-tension clamps, as appropriate and with sufficient weight rating for the application.
6. To Light Steel: Sheet metal screws.
7. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that meet seismic-restraint strength and anchorage requirements for a seismic zone 1.

E. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.

F. Do not fasten supports to piping, ductwork, mechanical equipment, cable tray or conduit.

G. The use of pneumatic-actuated anchors is not allowed except at ceilings. Obtain DEN Project Manager approval prior to ordering materials or performing work.

H. Do not drill structural steel members.

I. Install surface-mounted cabinets and panelboards with minimum of four anchors

J. Suspended conduit or box supports shall not be less than 1/4" diameter steel rod. Rod used as pedestal support is not acceptable. The contractor shall not use tie wire or wire of any type to support conduits, junction boxes or pull boxes.

K. No more than five (5) 1/2" conduits, three (3) 3/4" conduits or two (2) 1" conduits shall be supported on a single 1/4" diameter steel rod.

L. All conduits shall be supported by approved hangers. Supports installed and used by other trades such as duct hangers, pipe hangers, ceiling hangers, etc. shall not be used for conduit support.

M. Use vibration isolation pads for vibrating equipment such as transformers.

N. Plastic or fiber anchors are prohibited.

O. Anchoring in overhead cast in place, pre-tensioned or post-tensioned concrete is prohibited unless x-ray or ground penetrating radar study are performed and approved by the DIA Project Manager.

P. Route conduit through roof openings provided for piping and ductwork where possible; otherwise, route through roof jack with sealant approved by the roofing manufacturer.
3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Comply with installation requirements in Section 055000 "Metal Fabrications" for site-fabricated metal supports.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

C. Field Welding: Comply with AWS D1.1/D1.1M.

D. Anchor equipment to concrete base.
 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.4 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils (0.05 mm).

B. Touchup: Comply with requirements in Division 09 Section 099600 "High-Performance Coatings" for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

PART 4 - MEASUREMENT

4.1 METHOD OF MEASUREMENT

A. No separate measurement shall be made for work under this Section.
PART 5 - PAYMENT

5.1 PAYMENT

A. No separate payment will be made for work under this Section. The cost of the work described in this Section shall be included in the Lump Sum Contract price.

END OF SECTION 260529
SECTION 260533 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Metal conduits, tubing, and fittings.
 2. Metal wireways and auxiliary gutters.
 3. Surface raceways.

B. Related Requirements:
 1. Division 26 Section 260526 "Grounding and Bonding for Electrical Systems" for additional grounding and bonding requirements.
 2. Division 26 Section 260513 Medium-Voltage Cables.

C. Prohibited Materials
 1. Intermediate conduits.
 2. Aluminum conduit.
 3. Multi-conductor assemblies, unless written authorization is obtained from DEN Project Manager, or specifically allowed within specification.

D. Project Conditions
 1. Verify locations of equipment connections, outlets and small pull-boxes prior to rough in.
 2. Electrical and pull boxes are shown on Drawings in approximate locations unless dimensioned. Install at location required for box to serve intended purpose.

E. Alternates: Refer to Division 01 Section 012300 "Alternates" for description of Work in this Section affected by alternates.

1.3 DEFINITIONS

A. GRC: Galvanized rigid steel conduit.

B. RMC: Rigid Metallic Conduit.
C. RNC: Rigid Nonmetallic Conduit.
D. EMT: Electrical Metallic Conduit.
E. FMC: Flexible Metallic Conduit.
F. LFMC: Liquidtight Flexible Metallic Conduit.
G. HDPE: High Density Polyethylene.
H. FNC: Flexible Nonmetallic Conduit.
I. ENT: Electrical non-metallic conduit.
J. MC: Metal-clad cable.

1.4 ACTION SUBMITTALS
A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
 1. Include data substantiating that materials comply with requirements.
B. LEED Submittals (if required):
 1. Product Data for Credit IEQ 4.1: For solvent cements and adhesive primers, documentation including printed statement of VOC content.
 2. Laboratory Test Reports for Credit IEQ 4: For solvent cements and adhesive primers, documentation indicating that products comply with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
C. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, and attachment details.
D. Samples: Per request.
E. INFORMATIONAL SUBMITTALS
F. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of items involved:
 1. Structural members in paths of conduit groups with common supports.
 2. HVAC and plumbing items and architectural features in paths of conduit groups with common supports.
G. Qualification Data: For professional engineer.
H. Seismic Qualification Certificates: For enclosures, cabinets, and conduit racks and their mounting provisions, including those for internal components, from manufacturer.

I. Source quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. As-Built Plans: Submit complete as-built plans of all Work, including interface with other Work, in accordance with requirements as specified in Section 013300 "Submittal Procedures".

1.6 CONSTRUCTION WASTE MANAGEMENT

A. Construction waste shall be managed in accordance with provisions of Section 017419 "Construction Waste Management and Disposal". Documentation shall be submitted to satisfy the requirements of that Section.

PART 2 - PRODUCTS

2.1 METAL CONDUITS, TUBING, AND FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. AFC Cable Systems, Inc.
3. Anamet Electrical, Inc.
4. Electri-Flex Company.
5. O-Z/Gedney; a brand of EGS Electrical Group.
6. Picoma Industries, a subsidiary of Mueller Water Products, Inc.
7. Republic Conduit.
8. Robroy Industries.
10. Thomas & Betts Corporation.
11. Western Tube and Conduit Corporation.
12. Wheatland Tube Company; a division of John Maneely Company.
13. or approved equal.

B. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. GRC: Comply with ANSI C80.1 and UL 6.

D. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit.

1. Comply with NEMA RN 1.
2. Coating Thickness: 0.040 inch (1 mm), minimum.

E. EMT: Galvanized tubing. Comply with ANSI C80.3 and UL 797.

F. FMC: Comply with UL 1; zinc-coated steel.

G. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.

H. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.
 1. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 886 and NFPA 70.
 2. Fittings for EMT:
 a. Material: Steel.
 b. Type: Set screw or compression.
 c. Provide throated connectors where entering junction boxes.
 3. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.
 4. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch (1 mm), with overlapping sleeves protecting threaded joints.

I. Joint Compound for GRC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 METAL WIREWAYS AND AUXILIARY GUTTERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Cooper B-Line, Inc.
 2. Hoffman; a Pentair company.
 4. Square D; a brand of Schneider Electric.
 5. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 6. or approved equal.

B. Description: Sheet metal, complying with UL 870 and NEMA 250, Type 1, , and sized according to NFPA 70.
 1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
C. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

D. Wireway Covers: Hinged type or screw cover.

E. Finish: Manufacturer's standard enamel finish.

2.3 BOXES, ENCLOSURES, AND CABINETS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Adalet.
2. Cooper Technologies Company; Cooper Crouse-Hinds.
3. EGS/Appleton Electric.
5. FSR Inc.
6. Hoffman; a Pentair company.
7. Hubbell Incorporated; Killark Division.
8. Kraloy.
10. Mono-Systems, Inc.
12. RACO; a Hubbell Company.
13. Robroy Industries.
14. Spring City Electrical Manufacturing Company.
15. Stahlin Non-Metallic Enclosures; a division of Robroy Industries.
17. Wiremold / Legrand.
18. or approved equal.

B. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.

C. Sheet Metal Outlet and Device Boxes: Galvanized steel. Comply with NEMA OS 1 and UL 514A.

D. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, ferrous alloy, Type FD, with gasketed cover. Provide threaded hubs.

E. Nonmetallic Outlet and Device Boxes: Prohibited, unless specifically allowed in writing by the DEN Project Manager.

F. Small Sheet Metal Pull and Junction Boxes: Galvanized steel. NEMA OS 1.

G. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, galvanized, cast iron with gasketed cover.

H. Box extensions used to accommodate new building finishes shall be of same material
as recessed box.

I. Device Box Dimensions: 4 inches square by 2-1/8 inches deep (100 mm square by 60 mm deep) or as approved by DEN Project Manager.

J. Gangable boxes are allowed.

K. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, Type 1, Type 3R or Type 4X as appropriate, with continuous-hinge cover with flush latch unless otherwise indicated. Screw cover enclosures: VL50 & NEMA 1.

 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 2. Interior Panels: Steel; 14 gage steel, 12 gage if floor mounted, all sides finished with manufacturer's standard enamel, white.
 3. Large Pull Boxes: Boxes larger than 100 cubic inches in volume or 12 inches in any dimension.

 a. Interior Dry Locations: Use hinged or screw covered enclosure.
 b. Interior damp or wet locations: Use nema 3R hinged cover boxes.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Raceways shall not be installed in stairways or on the exterior of any building, unless specifically allowed by DEN Project Manager.

B. Outdoors: Apply raceway products as specified below unless otherwise indicated:

 1. Exposed Conduit: RMC.
 2. Concealed Conduit, Aboveground: RMC.

C. Indoors: Apply raceway products as specified below unless otherwise indicated:

 1. Exposed, Not Subject to Physical Damage: EMT.
 2. Exposed, Not Subject to Severe Physical Damage: EMT.
 3. Exposed and Subject to Severe Physical Damage: GRC. Raceway locations include all of the following:

 a. Loading dock and hoistway
 All Medium-voltage circuits throughout the CUP.
 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
 5. Wet Locations: GRC.
 6. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel in institutional and commercial kitchens and damp or wet
D. CONDUIT INSTALLATION SCHEDULE
 1. Wet Interior Locations: Rigid steel.

E. Minimum Raceway Size 3/4-inch (19-mm) trade size.

F. Raceway Fittings: Compatible with raceways and suitable for use and location.
 1. Rigid Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
 2. EMT: Use setscrew, or compression, steel fittings. Comply with NEMA FB 2.10.
 a. Setscrew fittings to be used for indoor applications in dry locations only.
 b. Compression fittings may be used in indoor or outdoor locations for damp or wet locations.
 3. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.

G. Unless otherwise indicated and where not otherwise restricted, use the conduit type indicated for the specified applications. Where more than one listed application applies, comply with the most restrictive requirements. Where conduit type for a particular application is not specified, use Galvanized Rigid Conduit.

3.2 INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.

B. Maintain a minimum of 6 inches (150 mm) between conduit and other piping. Maintain twelve inches (12") clearance between conduit and a heat source such as heating pipes, exhaust flues and heating appliances. Install horizontal raceway runs above water and steam piping.

C. Complete raceway installation before starting conductor installation.

D. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.

E. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 24 inches (610 mm) of changes in direction.

F. Install conduits parallel or perpendicular to building lines. Use conduit bodies to make changes in direction around beams or columns.

G. Support conduit within 24 inches (610 mm) of enclosures to which attached. Support
TECHNICAL SPECIFICATIONS
DENVER INTERNATIONAL AIRPORT
26 ELECTRICAL
260533
CUP CHILLER REPLACEMENT
201313641
RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

conduit at a maximum of 8 feet on center, within two (2) feet of a box or fitting.

H. Use only factory cast hubs for fastening conduit to cast boxes, and use steel or malleable iron hubs for fastening conduit to sheet metal boxes or equipment in damp or wet locations.

I. Avoid moisture traps where possible; where unavoidable, provide junction box with drain fitting at conduit low point.

J. Use suitable conduit caps to protect installed conduit against entrance of dirt and moisture during construction.

K. Exposed conduits subject to physical damage to be rigid steel to 6'-0" above floor, deck or grating except in electrical, communications and mechanical rooms.

L. Liquid-tight flexible steel conduit runs shall not exceed 6’ in length when connecting equipment, 6’ in length when connecting light fixtures or when fished in hollow spaces with written approval by DEN Project Manager and shall contain a grounding conductor.

M. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer’s written instructions.

N. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.

O. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch (35mm) trade size and insulated throat metal bushings on 1-1/2-inch (41-mm) trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.

P. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.

Q. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.

R. Cut conduit perpendicular to the length. For conduits 2-inch (53-mm) trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.

S. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 160-lb (72-kg) tensile strength. Leave at least 12 inches (300 mm) of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.

T. Surface Raceways:

1. Install surface raceway with a minimum 2-inch (50-mm) radius control at bend
2. Secure surface raceway with screws or other anchor-type devices at intervals not exceeding 48 inches (1200 mm) and with no less than two supports per straight raceway section. Support surface raceway according to manufacturer's written instructions. Tape and glue are not acceptable support methods.

U. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound.

V. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:
 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 2. Where an underground service raceway enters a building or structure.
 3. Where otherwise required by NFPA 70.

W. Comply with manufacturer's written instructions for solvent welding RNC and fittings.

X. Expansion-Joint Fittings:
 1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F (17 deg C) and that has straight-run length that exceeds 25 feet (7.6 m). Install in each run of aboveground RMC and EMT conduit that is located where environmental temperature change may exceed 100 deg F (55 deg C) and that has straight-run length that exceeds 100 feet (30 m).
 2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 a. Outdoor Locations Exposed to Direct Sunlight: 155degF (86degC) temperature change.
 b. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F (70 deg C) temperature change.
 3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F (0.06 mm per meter of length of straight run per deg C) of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F (0.0115 mm per meter of length of straight run per deg C) of temperature change for metal conduits.
 4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.
 5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion
movement.

6. Provide external bonding jumper for all expansion fittings.

Y. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches (1830 mm) of flexible conduit for equipment subject to vibration, noise transmission, or movement; and for motors. All vibrating equipment such as motors shall be connected with flexible steel conduit, not to exceed six feet in length.

1. Use LFMC in damp or wet locations subject to severe physical damage.

2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.

Z. Size conduit for conductor type installed or for Type THHN conductors, whichever is larger.

AA. Arrange conduit to maintain headroom and present a neat appearance. Arrange conduit supports to prevent distortion of alignment by wire pulling operations. Fasten conduit using galvanized straps, lay-in adjustable hangers, clevis hangers, or bolted split stamped galvanized hangers.

BB. Group conduit in parallel runs where practical and use conduit rack constructed of steel channel with conduit straps or clamps. Provide space for 25 percent additional conduit.

CC. Do not support conduit from cable tray or cable tray supports.

DD. Flexible conduit shall not be less than one-half (1/2) inch.

EE. When anchoring to a dual sheet metal pan deck and concrete, anchors of any type when placed from below the deck shall be placed only in the lower pan form. No anchors shall be installed in the upper (high) pan.

FF. X-ray or ground penetrating radar studies shall be made of concrete floors, walls or CMU walls.

GG. Coordinate installation of outlet or equipment boxes for systems or products furnished under other sections.

HH. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

II. Install electrical boxes as shown on Drawings, and as required for equipment, terminal strips, splices, taps, wire pulling, equipment connections and compliance with regulatory requirements.

JJ. Use appropriate gang box where more than one device is mounted together.

KK. Use 4 inch square box with plaster ring for single device outlets.
LL. Use malleable iron outlet box when surface mounted: on exterior of building, in wet location or damp location.

MM. Minimum junction and pull box size 4-11/16" x 4-11/16" x 2-1/8".

NN. Minimum outlet box size 4" x 4" x 2-1/8" including feed through outlet boxes.

OO. Install knockout closure in unused box openings.

PP. Install cabinets and enclosures plumb; anchor securely to wall and structural supports at each corner, minimum.

QQ. All floor-mounted equipment shall be on a 4" nominal concrete housekeeping pad.

RR. No cabinet shall be supported on slab or grade.

3.3 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.4 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.5 PROTECTION

A. Protect coatings, finishes, and cabinets from damage and deterioration.

1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.

2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

PART 4 - MEASUREMENT

4.1 METHOD OF MEASUREMENT

A. No separate measurement shall be made for work under this Section.
PART 5 - PAYMENT

5.1 PAYMENT

A. No separate payment will be made for work under this Section. The cost of the work described in this Section shall be included in the Lump Sum Contract price.

END OF SECTION 260533
SECTION 260544 - SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
 2. Sleeve-seal systems.
 5. Silicone sealants.

B. Related Requirements:
 1. Section 078413 "Penetration Firestopping" for penetration firestopping installed in fire-resistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

C. Alternates: Refer to Division 01 Section 012300 "Alternates" for description of Work in this Section affected by alternates.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include data substantiating that materials comply with requirements.

B. LEED Submittals:
 1. Product Data for Credit EQ 4.1: For sealants, documentation including printed statement of VOC content.
 2. Laboratory Test Reports for Credit EQ 4: For sealants, documentation indicating that products comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale
Environmental Chambers."

1.4 CONSTRUCTION WASTE MANAGEMENT

A. Construction waste shall be managed in accordance with provisions of Section 017419 "Construction Waste Management and Disposal". Documentation shall be submitted to satisfy the requirements of that Section.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Wall Sleeves:

2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Sleeves for Rectangular Openings:

2. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches (1270 mm) and with no side larger than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm).
 b. For sleeve cross-section rectangle perimeter 50 inches (1270 mm) or more and one or more sides larger than 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm).

2.2 SLEEVE-SEAL SYSTEMS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
 b. CALPICO, Inc.
 c. Metraflex Company (The).
 d. Pipeline Seal and Insulator, Inc.
 e. Proco Products, Inc.
 f. Link-Seal.
 g. or approved equal.
2. Sealing Elements: Nitrile (Buna N) rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.

3. Pressure Plates: Carbon steel

4. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS
A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber waterstop collar with center opening to match piping OD.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Presealed Systems.
 b. or approved equal.

2.4 GROUT
A. Description: Nonshrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.

C. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

2.5 SILICONE SEALANTS
A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.

1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.
2. Sealant shall have VOC content in accordance with 40 CFR 59, Subpart D (EPA Method 24).
3. Sealant shall comply with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed,
expand and cure in place to produce a flexible, non-shrinking foam.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

A. Comply with NECA 1.

B. Comply with NEMA VE 2 for cable tray and cable penetrations.

C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:
 1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants."
 b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.
 2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
 3. Size pipe sleeves to provide [1/4-inch (6.4-mm)] annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed or unless seismic criteria require different clearance.
 4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.
 5. Install sleeves for floor penetrations. Extend sleeves installed in floors [2 inches (50 mm)] above finished floor level. Install sleeves during erection of floors.

D. Aboveground, Exterior-Wall Penetrations: Seal penetrations using [steel] [cast-iron] pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.

B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements
3.3 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.

PART 4 - MEASUREMENT

4.1 METHOD OF MEASUREMENT

A. No separate measurement shall be made for work under this Section.

PART 5 - PAYMENT

5.1 PAYMENT

A. No separate payment will be made for work under this Section. The cost of the work described in this Section shall be included in the Lump Sum Contract price.

END OF SECTION 260544
SECTION 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Identification for raceways.
2. Identification of power and control cables.
3. Identification for conductors.
5. Warning labels and signs.
6. Instruction signs.
7. Equipment identification labels.
8. Miscellaneous identification products.

B. Alternates: Refer to Division 01 Section 012300 "Alternates" for description of Work in this Section affected by alternates.

1.3 ACTION SUBMITTALS

A. Product Data: For each electrical identification product indicated.

1. Include data substantiating that materials comply with requirements.

B. Samples: For each type of label and sign to illustrate size, colors, lettering style, mounting provisions, and graphic features of identification products.

C. Identification Schedule: An index of nomenclature of electrical equipment and system components used in identification signs and labels.

1.4 QUALITY ASSURANCE

B. Comply with NFPA 70.

D. Comply with ANSI Z535.4 for safety signs and labels.

E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

1.5 COORDINATION

A. Coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and the Operation and Maintenance Manual; and with those required by codes, standards, and 29 CFR 1910.145. Use consistent designations throughout Project.

B. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

C. Coordinate installation of identifying devices with location of access panels and doors.

D. Install identifying devices before installing acoustical ceilings and similar concealment.

1.6 CONSTRUCTION WASTE MANAGEMENT

A. Construction waste shall be managed in accordance with provisions of Section 017419 "Construction Waste Management and Disposal". Documentation shall be submitted to satisfy the requirements of that Section.

PART 2 - PRODUCTS

2.1 POWER RACEWAY IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway size.

B. Colors for Raceways Carrying Circuits at More Than 600 V:

1. Black letters on an orange field.

2. Legend: "DANGER CONCEALED HIGH VOLTAGE WIRING" with 3-inch (75-mm) high letters on 20-inch (500-mm) centers.

C. Tape and Stencil for Raceways Carrying Circuits More Than 600 V: 4-inch (100-mm-) wide black stripes on 10-inch (250-mm) centers diagonally over orange background that extends full length of raceway or duct and is 12 inches (300 mm) wide. Stop stripes at legends.

D. Pre-Printed Tags: Polyester tag, [0.010 inch (0.25 mm)] [0.015 inch (0.38 mm)] > thick, with corrosion-resistant grommet and cable tie for attachment to conductor or cable.
1. Marker for Tags: Machine-printed, permanent, waterproof, black ink marker recommended by printer manufacturer.

2.2 POWER AND CONTROL CABLE IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway and cable size.

B. Pre-Printed Tags: Polyester tag, [0.010 inch (0.25 mm)] [0.015 inch (0.38 mm)] thick, with corrosion-resistant grommet and cable tie for attachment to conductor or cable.

1. Marker for Tags: Machine-printed, permanent, waterproof, black ink marker recommended by printer manufacturer.

C. Snap-Around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeve, with diameter sized to suit diameter of cable it identifies and to stay in place by gripping action.

D. Snap-Around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeve, 2 inches (50 mm) long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

2.3 CONDUCTOR IDENTIFICATION MATERIALS

A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils (0.08 mm) thick by 1 to 2 inches (25 to 50 mm) wide.

B. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

C. Snap-Around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeve, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

D. Snap-Around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeve, 2 inches (50 mm) long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

E. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

F. Pre-Printed Tags: Polyester tag, [0.010 inch (0.25 mm)] [0.015 inch (0.38 mm)] thick, with corrosion-resistant grommet and cable tie for attachment to conductor or cable.

1. Marker for Tags: Machine-printed, permanent, waterproof, black ink marker recommended by printer manufacturer.
2.4 FLOOR MARKING TAPE
 A. 2-inch (50-mm) wide, 5-mil (0.125-mm) pressure-sensitive vinyl tape, with black and white stripes and clear vinyl overlay.

2.5 WARNING LABELS AND SIGNS
 B. Self-Adhesive Warning Labels: Factory-printed, multicolor, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment unless otherwise indicated.

 In accordance with NFPA 72 (NEC) Art. 110.16 and NFPA 70E.
 C. Baked-Enamel Warning Signs:
 1. Preprinted 20 gauge steel signs, punched or drilled for fasteners, with colors, legend, and size required for application.
 2. 1/4-inch (6.4-mm) grommets in corners for mounting.
 3. Nominal size, 14 by 10 inches (360 mm by 250 mm) unless 7 by 10 inches (180 by 250 mm) is the largest size that can be applied where needed.
 D. Metal-Backed, Butyrate Warning Signs:
 1. Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs with 0.0396-inch (1-mm) galvanized-steel backing; and with colors, legend, and size required for application.
 2. 1/4-inch (6.4-mm) grommets in corners for mounting.
 E. Nominal size, 14 by 10 inches (360 mm by 250 mm) unless 7 by 10 inches (180 by 250 mm) is the largest size that can be applied where needed.
 F. Warning label and sign shall include, but are not limited to, the following legends:
 1. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES (915 MM)."
 2. "XXXX VOLTS"
 3. "KEEP AWAY"
 4. "DO NOT TOUCH SWITCH"
 5. Lettering in accordance with NEC 110.16 and NFPA 70E requirements.
 G. Plasticized Tags:
 1. Manufacturer's standard preprinted or partially preprinted accident-prevention and operational tags, on plasticized card stock with matte finish suitable for writing, approximately 3-1/4-inch x 5-5/8-inch, with brass grommets and wire fasteners, and with appropriate preprinted wording including large-size primary wording, including but not limited to the following legends: "DANGER", "CAUTION"," Do NOT OPERATE".
2.6 INSTRUCTION SIGNS

A. Engraved, laminated acrylic or melamine plastic, minimum 1/16 inch (1.6 mm) thick for signs up to 20 sq. inches (129 sq. cm) and 1/8 inch (3.2 mm) thick for larger sizes.
 1. Engraved legend with black letters on white face.
 2. Punched or drilled for mechanical fasteners.
 3. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

B. Adhesive Film Label: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch (10 mm).

C. Adhesive Film Label with Clear Protective Overlay: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch (10 mm). Overlay shall provide a weatherproof and UV-resistant seal for label.

2.7 EQUIPMENT IDENTIFICATION LABELS

A. Adhesive Film Label: Machine printed, in black letters on white background, by thermal transfer or equivalent process. Minimum letter height shall be 1/4 inch (7 mm).

B. Adhesive Film Label with Clear Protective Overlay: Machine printed, in black letters on white background, by thermal transfer or equivalent process. Minimum letter height shall be 1/4 inch (7 mm). Overlay shall provide a weatherproof and UV-resistant seal for label.

C. Self-Adhesive, Engraved, Laminated Acrylic, or Melamine Label: Adhesive backed, with black letters on white background. Minimum letter height shall be 1/4 inch (7 mm).

D. Engraved, Laminated Acrylic or Melamine Label: Punched or drilled for screw mounting. Black letters on a white background. Minimum letter height shall be 1/4 inch (7 mm).

E. Stenciled Legend: In nonfading, waterproof, black ink or paint. Minimum letter height shall be [1 inch (25 mm)].

F. Provide nameplates with a minimum letter height as indicated below. Examples are given below for the size of letters to use for a given application and this not a list of the equipment to be identified. All equipment is required to be identified.
 1. For equipment designation: switchboards and motor control centers: 1/2 inch, panel boards: 1/4 inch. For voltage, bus ampacity, feeder source, and circuit number: 1/8 inch.
 2. Individual circuit breakers and or motor starters in motor control centers: For equipment designation and section number: 1/4 inch, for load served and location of load: 1/8 inch. Inside the door, a typed label shall provide complete motor data including nameplate horsepower, full load amperes, code letter, service factor, and voltage/phase rating.
3. Individual breakers in switchgears and switchboards: for breaker number (address number) and equipment designation; 1/4 inch, for breaker frame size and trip setting; 1/8 inch

4. Individual circuit breaker and spaces in panel boards: for numbers (section number) 1/4 inch.

5. Individual circuit breakers in distribution panel boards: 1/4 inch for panel being fed and 1/8 inch for its location.

6. Transformers: 1/4 inch for equipment designation and size; 1/8 inch for primary and secondary voltages, primary source and circuit number, secondary load and its location.

7. Individual remote indicating lights, meters, instruments, and control switches: 1/8 inch, indicate unit, equipment, or fire detector being monitored and condition indicated by illumination.

8. Individual switches and pilots: 1/8 inch, identify mechanical unit being served.

2.8 CABLE TIES

A. General-Purpose Cable Ties: Fungus inert, self-extinguishing, one piece, self-locking, Type 6/6 nylon.

1. Minimum Width: 1/8 inch (3 mm).

2. Tensile Strength at 73 deg F (23 deg C), According to ASTM D 638: 12,000 psi (82.7 MPa).

3. Temperature Range: Minus 40 to plus 185 deg F (Minus 40 to plus 85 deg C).

B. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self-extinguishing, one piece, self-locking, Type 6/6 nylon.

1. Minimum Width: 3/16 inch (5 mm).

2. Tensile Strength at 73 deg F (23 deg C), According to ASTM D 638: 12,000 psi (82.7 MPa).

3. Temperature Range: Minus 40 to plus 185 deg F (Minus 40 to plus 85 deg C).

2.9 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Paint: Comply with requirements in Division 09 painting Sections for paint materials and application requirements. Select paint system applicable for surface material and location (exterior or interior).

B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Verify identity of each item before installing identification products.

B. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.

C. Apply identification devices to surfaces that require finish after completing finish work.

D. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device.

E. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.

F. System Identification Color-Coding Bands for Raceways and Cables: Each color-coding band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot (15-m) maximum intervals in straight runs, and at 25-foot (7.6-m) maximum intervals in congested areas.

G. Cable Ties: For attaching tags. Use general-purpose type, except as listed below:

 1. Outdoors: UV-stabilized nylon.
 2. In Spaces Handling Environmental Air: Plenum rated.

H. Painted Identification: Comply with requirements in Division 09 painting Sections for surface preparation and paint application.

3.2 IDENTIFICATION SCHEDULE

A. Wire and Cable Marker:

 1. For wire/cables smaller than No. 2/0 use manufacturer's standard cable/conductor markers of wrap-around, pre-numbered plastic coated type are to be used and numbered to show circuit identification.
 2. For cables No. 4 AWG and larger heat shrink sleeving is to be used for phase color-coding.

B. Cable/Conductor Identification:

 1. The application of cable/conductor identification, with circuit number, on each wire / cable in each box/enclosure/cabinet is required. The identification shall match the marking system used in panel boards, shop drawings, and contract documents.

C. System Color Coding Schedule:
1. Where electrical emergency power is exposed, conduit shall have “RED” stripes on each section every 5 feet of electrical conduit (visible from the floor or above a suspended ceiling) and within 3 feet of all equipment.) All junction or pull boxes shall have the cover painted red.

2. Paging system conduits shall have “GREEN” bands, 5’ on centers for the entire length of conduit run. All junction or pull boxes shall have the cover painted green with the associated zone number written neatly on the box cover with permanent marker.

3. Security system conduits shall have “BLUE” bands, 5’ on centers for the entire length. All junction or pull boxes shall have the cover painted blue.

4. Temperature control conduits shall have “BROWN” bands, 5’ on centers for the entire length. All junction or pull boxes shall have the cover painted brown.

5. Closed circuit television (CCTV) conduits shall have YELLOW bands, 5’ on center for the entire length. All junction or pull boxes shall have the cover painted yellow.

6. Fire Alarm conduit shall be a continuous red factory finish.

D. Concealed Raceways, Duct Banks, More Than 600 V, within Buildings: Tape and stencil 4-inch (100-mm) wide black stripes on 10-inch (250-mm) centers over orange background that extends full length of raceway or duct and is 12 inches (300 mm) wide. Stencil legend “DANGER CONCEALED HIGH VOLTAGE WIRING” with 3-inch (75-mm) high black letters on 20-inch (500-mm) centers. Stop stripes at legends. Apply to the following finished surfaces:

1. Floor surface directly above conduits running beneath and within 12 inches (300 mm) of a floor that is in contact with earth or is framed above unexcavated space.

2. Wall surfaces directly external to raceways concealed within wall.

3. Accessible surfaces of concrete envelope around raceways in vertical shafts, exposed in the building, or concealed above suspended ceilings.

E. Accessible Raceways, More Than 600 V: Self-adhesive vinyl Snap-around labels. Install labels at maximum intervals.

F. Accessible Raceways, 600 V or Less, for Service, Feeder, and Branch Circuits More Than A, and V to ground: Identify with self-adhesive vinyl label self-adhesive vinyl tape applied in bands. Install labels at maximum intervals.

G. Junction and Pull Box ID: Identify the covers of each junction and pull box of the following systems with self-adhesive vinyl labels with the wiring system legend and system voltage. System legends shall be as follows:

1. Power.

H. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use color-coding conductor tape to identify the phase.

1. Color-Coding for Phase Identification, 600 V or Less: Use colors listed below for branch-circuit conductors.
a. Color shall be factory applied
b. Colors for 208/120-V Circuits:
 1) Phase A: Black.
 2) Phase B: Red.
 3) Phase C: Blue.
 4) Neutral: White
 5) Ground: Green
 6) Isolated Ground: Green with a yellow tracer
c. Colors for 480/277-V Circuits:
 1) Phase A: Brown.
 2) Phase B: Orange.
 3) Phase C: Yellow.
 4) Neutral: Gray
 5) Ground: Green
 6) Isolated Ground: Green with a yellow tracer
d. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches (150 mm) from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.

I. Power-Circuit Conductor Identification, More than 600 V: For conductors in vaults, pull and junction boxes, manholes, and handholes, use write-on tags nonmetallic plastic tag holder with adhesive-backed phase tags, and a separate tag with the circuit designation.

J. Install instructional sign including the color-code for conductors using adhesive-film-type labels.

K. Conductors to Be Extended in the Future: Attach write-on tags marker tape to conductors and list source.

 1. Identify conductors, cables, and terminals in enclosures and at junctions and terminals. Identify by system and circuit designation.
 2. Use system of marker tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.

M. Workspace Indication: Install floor marking tape to show working clearances in the direction of access to live parts. Workspace shall be as required by NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.
N. Danger Signs:
 1. Critical Switches/Controls: Danger signs shall be provided on switches and similar controls, regardless of whether concealed or locked up, where untimely or inadvertent operation could result in danger to persons, or damage to equipment, or damage to or loss of property.

O. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting:
 Self-adhesive warning labels Baked-enamel warning signs Metal-backed, butyrate warning signs.
 2. Identify system voltage with black letters on an orange background.
 3. Apply to exterior of door, cover, or other access.

P. Operating Instruction Signs: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation. Where detailed instructions or explanations are needed, provide plasticized tags with clearly written messages adequate for intended purposes.

Q. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and the Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.
 1. Labeling Instructions:
 a. Indoor Equipment: Mechanically fastened, engraved, laminated acrylic or melamine label. Unless otherwise indicated, provide a single line of text with 1/2-inch (13-mm) high letters on 1-1/2-inch (38-mm) high label; where two lines of text are required, use labels 2 inches (50 mm) high. Use black lettering on white field for normal and white letters on a red field for emergency. Provide text matching terminology and numbering of the contract documents and shop drawings. The sign shall include unit designation, source circuit number, circuit voltage, and other data specifically indicated. Also, the sign shall indicate normal source circuit number (“Fed from . . .”) and emergency source circuit number when the equipment is a transfer switch or fed directly from a transfer switch.
 b. Outdoor Equipment: Engraved, laminated acrylic or melamine label Stenciled legend 4 inches (100 mm) high.
 c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
 d. Fasten labels with appropriate mechanical fasteners that do not change the NEMA or NRTL rating of the enclosure.
 2. Equipment to Be Labeled:
a. Panelboards: include main bus ampacity on sign. Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be self-adhesive, engraved, laminated acrylic or melamine label.

b. Enclosures and electrical cabinets.

c. Access doors and panels for concealed electrical items.

d. Switchgear.

e. Switchboards.

f. Disconnect switch.

g. Motor-control centers.

h. Enclosed switches.

i. Selector switches, indicating lights. (Circuit number and voltage not required on sign).

j. Enclosed circuit breakers.

k. Enclosed controllers.

l. Variable-speed controllers.

m. Push-button stations.

n. Monitoring and control equipment.

o. Individual distribution circuit breakers.

3. All panel boards shall have a typed panel schedule indicating the date, contractor, type of equipment served, and its location.

PART 4 - MEASUREMENT

4.1 METHOD OF MEASUREMENT

A. No separate measurement shall be made for work under this Section.

PART 5 - PAYMENT

5.1 PAYMENT

A. No separate payment will be made for work under this Section. The cost of the work described in this Section shall be included in the Lump Sum Contract price.

END OF SECTION 260553
SECTION 260573 - PROTECTIVE DEVICE COORDINATION STUDY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes computer-based, fault-current and overcurrent protective device coordination studies. Protective devices shall be set based on results of the protective device coordination study.

B. Alternates: Refer to Division 01 Section 012300 "Alternates" for description of Work in this Section affected by alternates.

1.3 ACTION SUBMITTALS

A. Product Data: For computer software program to be used for studies.

1. Include data substantiating that materials comply with requirements.

B. Other Action Submittals: The following submittals shall be made after the approval process for system protective devices has been completed. Submittals may be in digital form.

1. Coordination-study input data, including completed computer program input data sheets.
2. Study and Equipment Evaluation Reports.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For coordination-study specialist.

B. Product Certificates: For coordination-study and fault-current-study computer software programs, certifying compliance with IEEE 399.
1.5 QUALITY ASSURANCE

A. Studies shall use computer programs that are distributed nationally and are in wide use. Software algorithms shall comply with requirements of standards and guides specified in this Section. Manual calculations are not acceptable.

B. Coordination-Study Specialist Qualifications: An entity experienced in the application of computer software used for studies, having performed successful studies of similar magnitude on electrical distribution systems using similar devices.

1. Professional engineer, licensed in the state where Project is located, shall be responsible for the study. All elements of the study shall be performed under the direct supervision and control of engineer.

C. Comply with IEEE 242 for short-circuit currents and coordination time intervals.

D. Comply with IEEE 399 for general study procedures.

PART 2 - PRODUCTS

2.1 COMPUTER SOFTWARE DEVELOPERS

A. Computer Software Developers: Subject to compliance with requirements, provide products by one of the following:

1. CGI CYME.
2. EDSA Micro Corporation.
3. ESA Inc.
4. Operation Technology, Inc.
5. SKM Systems Analysis, Inc.
6. ETAP Inc.

2.2 COMPUTER SOFTWARE PROGRAM REQUIREMENTS

A. Comply with IEEE 399.

B. Analytical features of fault-current-study computer software program shall include "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.

C. Computer software program shall be capable of plotting and diagramming time-current-characteristic curves as part of its output. Computer software program shall report device settings and ratings of all overcurrent protective devices and shall demonstrate selective coordination by computer-generated, time-current coordination plots.

1. Optional Features:
a. Arcing faults.
b. Simultaneous faults.
c. Explicit negative sequence.
d. Mutual coupling in zero sequence.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine Project overcurrent protective device submittals for compliance with electrical distribution system coordination requirements and other conditions affecting performance. Devices to be coordinated are indicated on Drawings.

1. Proceed with coordination study only after relevant equipment submittals have been assembled. Overcurrent protective devices that have not been submitted and approved prior to coordination study may not be used in study.

3.2 POWER SYSTEM DATA

A. Gather and tabulate the following input data to support coordination study:

1. Product Data for overcurrent protective devices specified in other electrical Sections and involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.

2. Impedance of utility service entrance.

3. Electrical Distribution System Diagram: In hard-copy and electronic-copy formats, showing the following:

 a. Circuit-breaker and fuse-current ratings and types.
 b. Relays and associated power and current transformer ratings and ratios.
 c. Transformer kilovolt amperes, primary and secondary voltages, connection type, impedance, and X/R ratios.
 d. Cables: Indicate conduit material, sizes of conductors, conductor material, insulation, and length.
 e. Busway ampacity and impedance.
 f. Motor horsepower and code letter designation according to NEMA MG 1 for motors which are connected to the power distribution system without VFDs.

4. Data sheets to supplement electrical distribution system diagram, cross-referenced with tag numbers on diagram, showing the following:

 a. Special load considerations, including starting inrush currents and frequent starting and stopping.
 b. Transformer characteristics, including primary protective device, magnetic inrush current, and overload capability.
c. Motor full-load current, locked rotor current, service factor, starting time, type of start, and thermal-damage curve for those motors connected to the system without VFDs.

d. Ratings, types, and settings of utility company's overcurrent protective devices.

e. Special overcurrent protective device settings or types stipulated by utility company.

f. Time-current-characteristic curves of devices indicated to be coordinated.

g. Manufacturer, frame size, interrupting rating in amperes rms symmetrical, ampere or current sensor rating, long-time adjustment range, short-time adjustment range, and instantaneous adjustment range for Power Vac 4160V circuit breakers.

h. Manufacturer and type, ampere-tap adjustment range, time-delay adjustment range, instantaneous attachment adjustment range, and current transformer ratio for overcurrent relays.

i. Panelboards, switchboards, motor-control center ampacity, and interrupting rating in amperes rms symmetrical.

3.3 FAULT-CURRENT STUDY

A. Calculate the maximum available short-circuit current in amperes rms symmetrical at circuit-breaker positions of the electrical power distribution system. The calculation shall be for a current immediately after initiation and for a three-phase bolted short circuit at each of the following:

1. 4160V Switchgear and switchboard bus.
2. Medium-voltage controller.
3. Distribution panelboard.

B. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Include studies of system-switching configurations and alternate operations that could result in maximum fault conditions.

C. Calculate momentary and interrupting duties on the basis of maximum available fault current.

D. Calculations to verify interrupting ratings of overcurrent protective devices shall comply with IEEE 141 and IEEE 242.

1. Transformers:

 a. ANSI C57.12.10.
 b. ANSI C57.12.22.
 c. ANSI C57.12.40.
 d. IEEE C57.12.00.
 e. IEEE C57.96.
4. Low-Voltage Fuses: IEEE C37.46.
5. Medium-Voltage Power Fuses: IEEE C37.48.1

E. Study Report:
1. Show calculated X/R ratios and equipment interrupting rating (1/2-cycle) fault currents on electrical distribution system diagram.
2. Show interrupting (5-cycle) and time-delayed currents (6 cycles and above) on medium voltage breakers as needed to set relays and assess the sensitivity of overcurrent relays.

F. Equipment Evaluation Report:
1. For devices and equipment rated for asymmetrical fault current, apply multiplication factors listed in the standards to 1/2-cycle symmetrical fault current.
2. Verify adequacy of phase conductors at maximum three-phase bolted fault currents; verify adequacy of equipment grounding conductors and grounding electrode conductors at maximum ground-fault currents. Ensure that short-circuit withstand ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.

3.4 COORDINATION STUDY

1. Calculate the maximum and minimum 1/2-cycle short-circuit currents.
2. Calculate the maximum and minimum interrupting duty (5 cycles to 2 seconds) short-circuit currents.
3. Calculate the maximum and minimum ground-fault currents.

B. Comply with IEEE 242 recommendations for fault currents and time intervals.

C. Transformer Primary Overcurrent Protective Devices:
1. Device shall not operate in response to the following:
 a. Inrush current when first energized.
 b. Self-cooled, full-load current or forced-air-cooled, full-load current, whichever is specified for that transformer.
 c. Permissible transformer overloads according to IEEE C57.96 if required by unusual loading or emergency conditions.
2. Device settings shall protect transformers according to IEEE C57.12.00, for fault currents.

D. Motors served by voltages more than 600 V shall be protected according to IEEE 620.
E. Conductor Protection: Protect cables against damage from fault currents according to ICEA P-32-382, ICEA P-45-482, and conductor melting curves in IEEE 242. Demonstrate that equipment withstands the maximum short-circuit current for a time equivalent to the tripping time of the primary relay protection or total clearing time of the fuse. To determine temperatures that damage insulation, use curves from cable manufacturers or from listed standards indicating conductor size and short-circuit current.

F. Coordination-Study Report: Prepare a written report indicating the following results of coordination study:

1. Tabular Format of Settings Selected for Overcurrent Protective Devices:
 a. Device tag.
 b. Relay-current transformer ratios; and tap, time-dial, and instantaneous-pickup values.
 c. Circuit-breaker sensor rating; and long-time, short-time, and instantaneous settings.
 d. Fuse-current rating and type.
 e. Ground-fault relay-pickup and time-delay settings.

2. Coordination Curves: Prepared to determine settings of overcurrent protective devices to achieve selective coordination. Graphically illustrate that adequate time separation exists between devices installed in series, including power utility company’s upstream devices. Prepare separate sets of curves for the switching schemes and for emergency periods where the power source is local generation. Show the following information:
 a. Device tag.
 b. Voltage and current ratio for curves.
 c. Three-phase and single-phase damage points for each transformer.
 d. No damage, melting, and clearing curves for fuses.
 e. Cable damage curves.
 f. Transformer inrush points.
 g. Maximum fault-current cutoff point.

G. Completed data sheets for setting of overcurrent protective devices.

PART 4 - METHOD OF MEASUREMENT

4.1 METHOD OF MEASUREMENT

A. No separate measurement shall be made for work under this Section.
PART 5 - PAYMENT

5.1 PAYMENT

A. No separate payment will be made for work under this Section. The cost of the work described in this Section shall be included in the Lump Sum Contract price.

END OF SECTION 260573
SECTION 260583 - ELECTRICAL CONNECTIONS FOR EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Electrical connections to equipment specified under other Sections or furnished by the Owner.

B. Applications of electrical power, control and monitoring connections specified in this section include the following:

1. From electrical source to motor controllers.
2. From motor controllers to motors.
3. To converters, rectifiers, transformers, inverters, switchgear, switchboards, panel boards, generators and similar equipment.
4. To grounds including ground electrode connections.
5. Equipment furnished in other Divisions (unless indicated otherwise).
6. Junction boxes and disconnect switches required for connecting motors and other electrical units of equipment are specified in applicable Division 26 sections, and are criteria of this Section.

C. Related requirements:

1. Section 260519 "Low-Voltage Electrical Power Conductors and Cables".

D. Alternates: Refer to Division 01 Section 012300 "Alternates" for description of Work in this Section affected by Alternates.

1.3 ACTION SUBMITTALS

A. The following data shall be submitted in accordance with Sections 013300 "Submittal Procedures" required prior to starting installation:

1. Product Data: Manufacturer’s data on electrical connections for equipment products and materials.
 a. Include data substantiating that materials comply with requirements.

2. Complete wiring diagrams and/or shop drawings for installation purposes shall be
furnished under the Mechanical or other Divisions, as required by DEN Project Manager, prior to installation.

1.4 CLOSEOUT SUBMITTALS

A. As-Built Plans: Submit complete as-built plans of all Work, including interface with other Work, in accordance with requirements as specified in Section 013300 "Submittal Procedures".

1.5 QUALITY ASSURANCE

A. Products, materials, equipment and systems shall comply with the following Codes and Standards:

1. NFPA Compliance: NFPA 70, “National Electrical Code (NEC)” as adopted and amended by the Denver Building Code and as applicable to products used and the installation of electrical power connections (terminals and splices), junction boxes, motor starters and disconnect switches.

3. ANSI Compliance: Applicable requirements of ANSI/NEMA and ANSI/EIA standards pertaining to products and installation of electrical connections for equipment.

4. UL Compliance: UL Std. 486A, “Wire Connectors and Soldering Lugs for Use with Copper Conductors” including, but not limited to, tightening of electrical connectors to torque values indicated. Electrical connection products and materials are to be UL-listed and labeled.

1.6 CONSTRUCTION WASTE MANAGEMENT

A. Construction waste shall be managed in accordance with provisions of Section 017419 "Construction Waste Management and Disposal". Documentation shall be submitted to satisfy the requirements of that Section.

PART 2 - PRODUCTS

2.1 MATERIALS AND COMPONENTS

A. Products shall be as specified in other Sections of this Division.

B. General: Each electrical connection shall be a complete assembly of materials, including but not necessarily limited to, pressure connectors, terminals (lugs), electrical insulating tape, heat-shrinkable insulating tubing, cable ties, stress cones, splice kits, termination kits, solder less wire nuts, and other items and accessories as needed to complete splices and terminations as required.
1. Connectors and Terminals: Electrical connectors and terminals shall mate and match, including sizes and ratings, with equipment terminals that are recommended by equipment manufacturer for intended applications.

2. Electrical Connection Accessories: Electrical insulating tape, heat-shrinkable insulating tubing and boots, stress cones, splice kits, termination kits, wirenuts and cable ties as recommended for use by accessories manufacturers for type of services required.

2.2 MECHANICAL AND ELECTRICAL COORDINATION

A. Responsibility: It is the contractor’s responsibility to complete the EXHIBIT A SCHEDULE included at the end of this Section. Reference Section 019990 “Standard Forms”. The Contractor shall include all costs and work associated with these items in his bid.

B. Verify location, size and characteristics of all mechanical equipment before installation of electric service. In all cases of the installation of heating, ventilating, air conditioning, plumbing and other mechanical equipment, the Contractor is responsible for all revisions, changes and modifications necessary to properly supply electric services to the equipment.

PART 3 - EXECUTION

3.1 INSPECTION

A. Verify that equipment is ready for electrical connection, wiring and energization.

3.2 PREPARATION

A. Review equipment submittals prior to installation and electrical rough-in. Verify location, size, and type of connections. Coordinate details of equipment connections with supplier and installer.

3.3 INSTALLATION

A. Use wire and cable with insulation suitable for temperatures encountered in heat-producing equipment.

B. Make conduit connections to equipment using flexible conduit. Use liquid-tight flexible conduit in damp or wet locations. Length shall be six feet (6’) maximum.

C. Install pre-finished cord set where connection with attachment plug is indicated or specified, use attachment plug with suitable strain-relief clamps.

D. Provide suitable strain-relief clamps for cord connections to outlet boxes and equipment connection boxes.
E. Make wiring connections in control panel or in wiring compartment of pre-wired equipment in accordance with manufacturer’s instructions. Provide interconnecting wiring as required for a complete operating system.

F. Install disconnect switches, controllers, control stations, and control devices such as limit switches and temperature switches as required for a complete operating system. Connect with conduit and wiring as required for a complete operating system.

3.4 EQUIPMENT CONNECTION SCHEDULE

A. Furnish, set in place, and wire, except as may be otherwise indicated, all heating, ventilating, air conditioning, plumbing, fire protection, and other motors and controls in accordance with the electrical/mechanical coordination schedule. The contractor shall carefully coordinate with work performed under the Mechanical and other Divisions if these specifications.

All line and low voltage wiring shall be installed utilizing materials and methods as specified in the Division 26 of the technical specifications.

3.5 INSTALLATION OF ELECTRICAL CONNECTIONS

A. Electrical connections shall be installed in accordance with equipment manufacturer’s written instructions and with recognized industry practices, and complying with applicable requirements of UL, NEC and NECA’s “Standard of Installation” to ensure that products fulfill requirements.

1. As a minimum: Each feeder circuit to panelboards, switchboards, motor control centers, transformers, and 480-volt (and higher) motor circuits shall have an insulated equipment ground conductor.

2. Splices shall be covered with electrical insulating material equivalent to, or of greater insulation rating, than electrical insulation rating of those conductors being spliced.

3. Cables and wires shall be trimmed as long as practicable and routing shall be arranged to facilitate inspection, testing and maintenance.

4. Connectors and terminals, including screws and bolts, shall be tightened in accordance with equipment manufacturer’s published torque tightening values for equipment connectors. Proper torquing tools, including torque screwdriver, beam-type torque wrench, and ratchet wrench with adjustable torque settings shall be used to comply with torquing values contained in UL 496A or the manufacturer’s literature.

5. Identification markers are to be fastened to each electrical power supply wire/cable conductor in accordance with Section 260553 "Identification for Electrical Systems”.

 a. Markers are to be affixed on each terminal conductor, as close as possible to the point of connection.
3.6 FIELD QUALITY CONTROL

A. The correct direction of rotation of each motor is to be verified.

B. Provide measured torquing value checklist with witness signature to DEN Project Manager.

C. Perform infrared scanning of all splices and terminations as required in Section 260519 "Low-Voltage Electric Power Conductors and Cables".

PART 4 - MEASUREMENT

4.1 MEASUREMENT

A. No separate measurement will be made for the work specified in this Section.

PART 5 - PAYMENT

5.1 PAYMENT

A. No separate payment will be made for work specified in this Section, but shall be included in the Contract Lump Sum Bid Price for Division 16 - Electrical, which price shall include all necessary and incidental material and work thereto.

END OF SECTION 260583
SECTION 260800 - COMMISSIONING OF ELECTRICAL SYSTEMS

PART 1 – GENERAL

1.1 COMMISSIONING AGENCY

A. The CxA has been contracted directly with the owner for this project. The CxA has overall responsibility for planning and coordinating the commissioning process. However, commissioning involves all parties to the design and construction process, including the electrical (Division 26) contractor, as many HVAC system components require electrical power and controls in order to operate as specified.

1.2 COMMISSIONING RESPONSIBILITY

A. The electrical (Division 26) contractor’s responsibilities are defined in Section 01 91 13 of the specifications. Each contractor and supplier within Division 26 shall review Section 01 91 13, and their bids shall include for carrying out the work described, as it applies to each Section within the Division 26 specifications, individually and collectively.

1.3 ELECTRICAL EQUIPMENT AND SYSTEMS TO BE COMMISSIONED

A. Electrical Systems (as applicable)

1. Medium-Voltage Switchgear

2. Variable Frequency Controllers

PART 2 - PRODUCTS

2.1 INSTRUMENTATION

A. Refer to General Commissioning Specification Section 01 91 13.

B. Instrumentation required to verify and test system and equipment performance shall be provided by installing contractor and made available to the Commissioning Agent.

PART 3 - EXECUTION

3.1 PRE-STARTUP AND STARTUP ACTIVITIES

A. Refer to General Commissioning Specification Section 01 91 13.

3.2 FUNCTIONAL PERFORMANCE TESTING
A. Refer to General Commissioning Specification Section 01 91 13.

3.3 OPERATION AND MAINTENANCE MANUALS

A. Refer to General Commissioning Specification Section 01 91 13

3.4 TRAINING OF OWNER PERSONNEL

A. See other Specification Sections contained in Division 01, Division 22, Division 23 and Division 26 for additional training requirements.

B. Provide designated Owner personnel with comprehensive training in the understanding of the systems and the operation and maintenance of each lighting control system.

C. CxA shall witness a sampling of the training sessions and provide approval of the content.

PART 4 - MEASUREMENT

4.1 METHOD OF MEASUREMENT

A. No separate measurement shall be made for work under this Section.

PART 5 - PAYMENT

5.1 METHOD OF PAYMENT

B. No separate payment will be made for work under this Section. The cost of the work described in this Section shall be included in the Lump Sum Contract price.

END OF SECTION 260800
SECTION 260913 - ELECTRICAL POWER MONITORING AND CONTROL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes the following for monitoring of electrical power system:
 1. Communication network and interface modules for data transmission protocols.

1.3 DEFINITIONS

A. Ethernet: Local area network based on IEEE 802.3 standards.

B. Firmware: Software (programs or data) that has been written onto read-only memory (ROM). Firmware is a combination of software and hardware. Storage media with ROMs that have data or programs recorded on them are firmware.

C. HTML: Hypertext markup language.

D. I/O: Input/output.

E. KY Pulse: A term used by the metering industry to describe a method of measuring consumption of electricity that is based on a relay changing status in response to the rotation of the disk in the meter.

F. LAN: Local area network; sometimes plural as "LANs."

G. LCD: Liquid crystal display.

H. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or remote-control, signaling and power-limited circuits.

I. Modbus TCP/IP: An open protocol for exchange of process data.

J. Monitoring: Acquisition, processing, communication, and display of equipment status data, metered electrical parameter values, power quality evaluation data, event and alarm signals, tabulated reports, and event logs.

K. PC: Personal computer; sometimes plural as “PCs.”
L. rms: Root-mean-square value of alternating voltage, which is the square root of the mean value of the square of the voltage values during a complete cycle.

O. TCP/IP: Transport control protocol/Internet protocol incorporated into Microsoft Windows.

P. THD: Total harmonic distortion.

Q. UPS: Uninterruptible power supply; used both in singular and plural context.

R. WAN: Wide area network.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.
 1. Include data substantiating that materials comply with requirements.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer.

B. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. As-Built Plans: Submit complete as-built plans of all Work, including interface with other Work, in accordance with requirements as specified in Section 013300 "Submittal Procedures".

1.7 QUALITY ASSURANCE

A. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for installation of units required for this Project.

B. Manufacturer Qualifications: A firm experienced in manufacturing power monitoring and control equipment similar to that indicated for this Project and with a record of successful in-service performance. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
1.8 COORDINATION
 A. Coordinate features of distribution equipment and power monitoring and control components to form an integrated interconnection of compatible components.
 B. Coordinate Work of this Section with those in Sections specifying distribution components that are monitored or controlled by power monitoring equipment.
 C. Power monitoring on the Concourses, in the Main Terminal, the Airport Office Building and other buildings as needed: Equipment shall be compatible with POWER-NET, from Cutler Hammer.

1.9 CONSTRUCTION WASTE MANAGEMENT
 A. Construction waste shall be managed in accordance with provisions of Section 017419 "Construction Waste Management and Disposal". Documentation shall be submitted to satisfy the requirements of that Section.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. General Electric Co.

FUNCTIONAL DESCRIPTION
 B. Instrumentation and Recording Devices: Monitor and record load profiles and chart energy consumption patterns.
 1. Calculate and Record the Following:
 a. Load factor.
 b. Peak demand periods.

2.2 SYSTEM REQUIREMENTS
 A. Addressable Devices: All transmitters and receivers shall communicate unique device identification and status reports to monitoring and control clients.
B. Minimum Protection for Communication, Signal, Control, and Low-Voltage Power Lines: Comply with requirements as recommended by manufacturer for type of line being protected.

C. BACNet Interface: Provide factory-installed hardware and software to enable the CUP BACNet System to monitor, display, and record data for use in processing reports.

1. Hardwired Monitoring Points: Electrical power demand (kilowatts), electrical power consumption (kilowatt-hours), power factor

2.3 COMMUNICATION COMPONENTS AND NETWORKS

A. Network Configuration: High-speed, multi-access, open nonproprietary, industry standard communication protocol; LANs complying with EIA 485, 100 Base-T Ethernet, and Modbus TCP/IP.

B. Communications:

1. Power monitor shall be permanently connected to communicate with CUP operations system via the BACNet system.
2. Local plug-in connections shall be for RS-232 and 100 Base-T Ethernet.

2.4 LOW-VOLTAGE WIRING

A. Comply with Section 260523 "Control-Voltage Electrical Power Cables."

B. Low-Voltage Control Cable: Multiple conductor, color-coded, No. 20 AWG copper, minimum.

1. Sheath: PVC; except in plenum-type spaces, use sheath listed for plenums.
2. Ordinary Switching Circuits: Three conductors unless otherwise indicated.
3. Switching Circuits with Pilot Lights or Locator Feature: Five conductors unless otherwise indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine pathway elements intended for cables. Check raceways, cable trays, and other elements for compliance with space allocations, installation tolerances, hazards to cable installation, and other conditions affecting installation.

1. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 CABLING

A. Comply with NECA 1.

B. Install cables and wiring according to requirements in Section 271500 "Communications Horizontal Cabling."

C. Wiring Method: Install wiring in raceway and cable tray except within consoles, cabinets, desks, and counters. Conceal raceway and wiring except in unfinished spaces.

D. Wiring Method: Install wiring in raceway and cable tray except within consoles, cabinets, desks, and counters and except in accessible ceiling spaces and in gypsum board partitions where unenclosed wiring method may be used. Use NRTL-listed plenum cable in environmental air spaces, including plenum ceilings. Conceal raceway and cables except in unfinished spaces.

E. Install LAN cables using techniques, practices, and methods that are consistent with specified category rating of components and that ensure specified category performance of completed and linked signal paths, end to end.

F. Install cables without damaging conductors, shield, or jacket.

3.3 IDENTIFICATION

A. Identify components and power and control wiring according to Section 260553 "Identification for Electrical Systems."

B. Label each power monitoring and control module with a unique designation.

3.4 GROUNDING

A. Comply with IEEE 1100, "Recommended Practice for Powering and Grounding Electronic Equipment."

3.5 FIELD QUALITY CONTROL

A. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:

1. Electrical Tests: Use caution when testing devices containing solid-state components.

 2. Continuity tests of circuits.
3. Operational Tests: Set and operate controls at workstation and at monitored and controlled devices to demonstrate their functions and capabilities. Use a methodical sequence that cues and reproduces actual operating functions as recommended by manufacturer. Submit sequences for approval. Note response to each test command and operation. Note time intervals between initiation of alarm conditions and registration of alarms at central-processing workstation.

a. Coordinate testing required by this Section with that required by Sections specifying equipment being monitored and controlled.
b. Test LANs according to requirements in Section 271500 “Communications Horizontal Cabling.”
c. System components with battery backup shall be operated on battery power for a period of not less than 10 percent of calculated battery operating time.
d. Verify accuracy of graphic screens and icons.
e. Metering Test: Load feeders, measure loads on feeder conductor with an rms reading clamp-on ammeter, and simultaneously read indicated current on the same phase at central-processing workstation. Record and compare values measured at the two locations. Resolve discrepancies greater than 5 percent and record resolution method and results.
f. Record metered values, control settings, operations, cues, time intervals, and functional observations and submit test reports printed by workstation printer.

C. Power monitoring and control equipment will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

E. Correct deficiencies, make necessary adjustments, and retest. Verify that specified requirements are met.

F. Test Labeling: After satisfactory completion of tests and inspections, apply a label to tested components indicating test results, date, and responsible agency and representative.

G. Reports: Written reports of tests and observations. Record defective materials and workmanship and unsatisfactory test results. Record repairs and adjustments.

H. Remove and replace malfunctioning devices and circuits and retest as specified above.

3.6 ON-SITE ASSISTANCE

A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to three (3) visits to Project during other-than-normal occupancy hours for this purpose.
PART 4 - MEASUREMENT

4.1 METHOD OF MEASUREMENT

A. No separate measurement shall be made for work under this Section.

PART 5 - PAYMENT

5.1 METHOD OF PAYMENT

A. No separate payment will be made for work under this Section. The cost of the work described in this Section shall be included in the Lump Sum Contract price.

END OF SECTION 260913
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes metal-clad, circuit-breakerswitchgear with the following optional components, features, and accessories:

1. Copper, silver-plated main bus at connection points.
2. Communication modules.
4. Control battery system.
5. Mimic bus.

B. Alternates: Refer to Division 01 Section 012300 "Alternates" for description of Work in this Section affected by alternates.

1.3 DEFINITIONS

B. GFCI: Ground-Fault Circuit Interrupter.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of switchgear and related equipment, include the following:

1. Rated capacities, operating characteristics, furnished specialties, and accessories for individual circuit breakers.
2. Time-current characteristic curves for overcurrent protective devices, including circuit-breaker relay trip devices.
3. Include data substantiating that materials comply with requirements.

B. Shop Drawings: For each type of switchgear and related equipment, include the following:

1. Dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show method of field assembly and location and size of each field connection. Include the following:
a. Tabulation of installed devices with features and ratings.
b. Outline and general arrangement drawing showing dimensions, shipping sections, and weights of each assembled section.
c. Drawing of cable termination compartments showing preferred locations for conduits and indicating space available for cable terminations.
d. Floor plan drawing showing locations for anchor bolts and leveling channels.
e. Current ratings of buses.
f. Short-time and short-circuit ratings of switchgear assembly.
g. Nameplate legends.
h. Mimic-bus diagram.
i. Utility company’s metering provisions with indication of approval by utility company.

2. Design Calculations: Signed and sealed by a qualified professional engineer. Calculate requirements for selecting seismic restraints.

3. Wiring Diagrams: For each type of switchgear and related equipment, include the following:
 a. Power, signal, and control wiring.
 b. Three-line diagrams of current and future secondary circuits showing device terminal numbers and internal diagrams.
 c. Schematic control diagrams.
 d. Diagrams showing connections of component devices and equipment.
 e. Schematic diagrams showing connections to remote devices.

C. Coordination Drawings: Floor plans showing dimensioned layout, required working clearances, and required area above and around switchgear where piping and ducts are prohibited. Show switchgear layout and relationships between components and adjacent structural and mechanical elements. Show support locations, type of support, and weight on each support. Identify field measurements.

D. Samples: Representative portion of mimic bus with specified finish. Manufacturer’s color charts showing colors available for mimic bus.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For installer and product manufacturers.

B. Source quality-control test reports.

C. Field quality-control test reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For switchgear and switchgear components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
1. Manufacturer’s written instructions for testing and adjusting overcurrent protective devices.
2. Time-current curves, including selectable ranges for each type of overcurrent protective device.

B. As-Built Plans: Submit complete as-built plans of all Work, including interface with other Work, in accordance with requirements as specified in Section 013300 “Submittal Procedures”.

1.7 QUALITY ASSURANCE

A. Factory Testing and Witness Testing:

1. Furnish all test equipment and personnel, and perform all tests as may be required and as specified herein.
2. The manufacturer shall perform all tests normally conducted in accordance with the manufacturer’s standard test procedures for all substations. In addition, the manufacturer shall perform all supplementary testing as defined throughout this specification for all substations. All normal and supplemental testing, which is not witnessed by the DIA Project Manager, shall be documented in certified test reports and shall be submitted to the DIA Project Manager for review within two weeks of the performance of the testing.
3. The following tests shall be performed at the factory and shall be witnessed by the Engineer of Record and DIA Project Manager, or their duly authorized representative:
 a. A complete visual inspection of the equipment, both internally and externally.
 b. A complete test of all automatic transfer schemes including all operation and failure modes.
 c. A complete test of all control panels and controls including dry contact outputs.
 d. Verification of proper operation of all metering.
 e. Verify mechanical operation; interlocks and interchangeability of selected breakers.
4. The testing outlined in item “A” above shall be performed only on one main switchgear. In order to perform such testing, all breakers shall be shipped to the switchboard factory and installed in their respective cubicles in a completely assembled Distribution Section.
5. Submit to the DEN Project Manager ninety (90) calendar days prior to scheduled testing all test procedures for approval, and notify the DEN Project Manager four (4) weeks prior to scheduled testing what the expected duration of the tests will be.
6. Provide four (4) copies of the factory test report within two (2) weeks of the completion of such witness tests.

B. Source Limitations: Obtain each type of switchgear and associated components through one source from a single manufacturer.
C. Product Options: Drawings indicate size, profiles, and dimensional requirements of switchgear and are based on the specific system indicated. Refer to Section 016000 "Product Requirements."

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

E. Comply with IEEE C2.

1.9 PROJECT CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation at indicated ampere ratings for the following conditions:
 1. Ambient temperature range: -30 deg F (-35 deg C) to 120 deg F (49 deg C)
 2. Altitude: 5500 feet (1677 m) above sea level.
 3. Excessive solar radiation.

B. Installation Pathway: Remove and replace building components and structures to provide pathway for moving switchgear into place.

C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for switchgear, including clearances between switchgear and adjacent surfaces and other items. Comply with indicated maximum dimensions.

D. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service according to requirements indicated:
1. Any power outages necessary to install or test electrical systems and/or equipment shall be coordinated with Denver International Airport Maintenance/Engineering. A written shutdown request form shall be submitted to and approved by the DEN Project Manager two (2) weeks prior to the shutdown.

2. Do not proceed with interruption of electrical service without DEN Project Manager's written permission.

1.10 COORDINATION

A. Coordinate layout and installation of switchgear and components with other construction including conduit, piping, equipment, and adjacent surfaces. Maintain required clearances for workspace and equipment access doors and panels.

B. Coordinate size and location of concrete bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

1.11 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fuses: Six (6) of each type and rating used. Include spares for future transformers, control power circuits, and fusible devices.

2. Indicating Lights: Six (6) of each type installed.

3. Touchup Paint: Three (3) containers of paint matching enclosure finish, each 0.5 pint (250 mL).

B. Maintenance Tools: Furnish tools and miscellaneous items required for interrupter switchgear test, inspection, maintenance, and operation. Include the following:

1. Fuse-handling tool.

2. Extension rails, lifting device, transport or dockable dolly or mobile lift, and all other items necessary to remove circuit breaker from housing and transport to remote location.

3. Racking handle to move circuit breaker manually between connected and disconnected positions, and a secondary test coupler to permit testing of circuit breaker without removal from switchgear.

1.12 CONSTRUCTION WASTE MANAGEMENT

A. Construction waste shall be managed in accordance with provisions of Section 017419 "Construction Waste Management and Disposal". Documentation shall be submitted to satisfy the requirements of that Section.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:

 a. General Electric

2.2 MANUFACTURED UNITS

A. Description: Factory assembled and tested, and complying with IEEE C37.20.1.

B. Ratings: Suitable for application in 3-phase, 60-Hz, solidly grounded-neutral system.

C. System Voltage: 4.16 kV nominal; 4.76 kV maximum

2.3 METAL-CLAD, CIRCUIT-BREAKER SWITCHGEAR

A. Subject to compliance with requirements, provide products by one of the following:

 1. General Electric Distribution & Control.
 2. or approved equal.

B. Comply with IEEE C37.20.3.

C. Comply with IEEE C37.20.7. Provide arc-resistant switchgear, Type 1.

D. Nominal Interrupting-Capacity Class: 350 MVA.

E. Ratings: Comply with IEEE C37.04.

F. Circuit Breakers: Three-pole, single-throw, electrically operated, drawout-mounting units using three individual, vacuum-sealed interrupter modules and including the following features:

 1. Operating Mechanism: Electrically charged, mechanically and electrically trip-free, stored-energy operated.

 a. Design mechanism to permit manual charging and slow closing of contacts for inspection or adjustment.

G. Test Accessories: Relay and meter test plugs.
H. Low-DC-Voltage Alarm: Switchgear shall have a monitor for dc control power voltage with a remote alarm located where indicated. Alarm shall sound if voltage falls to an adjustable value to indicate an impending battery failure. Factory set alarm value at 80 percent of full-charge voltage.

2.4 FABRICATION

A. Indoor Enclosure: Steel.

B. Finish: Manufacturer's standard gray finish over rust-inhibiting primer on phosphatizing-treated metal surfaces.

C. Bus Transition Unit: Arranged to suit bus and adjacent units.

D. Incoming-Line Unit: Arranged to suit incoming line.

E. Outgoing Feeder Units: Arranged to suit distribution feeders.

F. Auxiliary Compartments: Arranged to suit house meters, relays, controls, and auxiliary equipment; isolated from medium-voltage components.

G. Key Interlocks: Arranged to effect interlocking schemes indicated.

H. Provisions for Future Key Interlocks: Mountings and hardware required for future installation of locks, where indicated.

2.5 COMPONENTS

A. Main Bus: Copper, silver plated at connection points; full length of switchgear.

B. Ground Bus: Copper, silver plated or copper, tin plated; minimum size 1/4 by 2 inches (6 by 50 mm); full length of switchgear.

C. Bus Insulation: Covered with flame-retardant insulation.

1. Potential Transformers: Secondary voltage rating of 120 V and NEMA accuracy class of 0.3 with burdens of W, X, and Y.

2. Current Transformers: Burden and accuracy class suitable for connected relays, meters, and instruments.

E. Multifunction Digital-Metering Monitor: Microprocessor-based unit suitable for three- or four-wire systems, listed and labeled by an NRTL, and with the following features:

1. Inputs from sensors or 5-A current-transformer secondaries, and potential terminals rated to 600 V.

2. Switch-selectable digital display with the following features:
2.6 CONTROL BATTERY SYSTEM

A. System Requirements: Battery shall have number of cells and ampere-hour capacity based on an initial specific gravity of 1.210 at 25 deg C with electrolyte at normal level and minimum ambient temperature of 13 deg C. Cycle battery before shipment to guarantee rated capacity on installation. Arrange battery to operate ungrounded.

B. Battery: Lead-calcium type in sealed, clear plastic or glass containers, complete with electrolyte, fully charged and arranged for shipment with electrolyte in cells. Limit weight of each container to not more than 70 lb (32 kg) and cells per container to not more than 3. System batteries shall be suitable for service at an ambient temperature ranging from minus 18 to 25 deg C. Limit variation of current output to 0.8 percent for each degree below 25 deg C down to minus 8 deg C.

C. Rack: Two-step rack with electrical connections between battery cells and between rows of cells; include two flexible connectors with bolted-type terminals for output leads. Rate battery rack, cell supports, and anchorage for seismic requirements.

D. Accessories:
1. Thermometers with specific-gravity correction scales.
2. Hydrometer syringes.
3. Set of socket wrenches and other tools required for battery maintenance.
4. Wall-mounting, nonmetallic storage rack fitted to store above items.
5. Set of cell numerals.

E. Charger: Static-type silicon rectifier equipped with automatic regulation and provision for manual and automatic adjustment of charging rate. Unit shall automatically maintain output voltage within 0.5 percent from no load to rated charger output current, with ac input-voltage variation of plus or minus 10 percent and input-frequency variation of plus or minus 3 Hz. Other features of charger include the following:

1. DC ammeter.
2. DC Voltmeter: Maximum error of 5 percent at full-charge voltage; operates with toggle switch to select between battery and charger voltages.
3. Ground Indication: Two appropriately labeled lights to indicate circuit ground, connected in series between negative and positive terminals, with midpoint junction connected to ground by normally open push-button contact.
4. Capacity: Sufficient to supply steady load, float-charge battery between 2.20 and 2.25 V per cell and equalizing charge at 2.33 V per cell.
5. Charging-Rate Switch: Manually operated switch provides for transferring to higher charging rate. Charger operates automatically after switch operation until manually reset.
6. AC power supply is 120 V, 60 Hz, subject to plus or minus 10 percent variation in voltage and plus or minus 3-Hz variation in frequency. After loss of ac power supply for any interval, charger automatically resumes charging battery. Charger regulates rate of charge to prevent damage due to overload and to prevent fuses or circuit breakers from opening.
7. Protective Feature: Current-limiting device or circuit, which limits output current to rating of charger but does not disconnect charger from either battery or ac supply; to protect charger from damage due to overload, including short circuit on output terminals.
8. Electrical Filtering: Reduces charger's audible noise to less than 26 dB.

2.7 IDENTIFICATION

A. Materials: Refer to Section 260553 "Identification for Electrical Systems." Identify units, devices, controls, and wiring.

B. Nameplates shall give item designation and circuit number as well as frame ampere size and appropriate trip rating. Furnish Master nameplate giving switchgear designation, voltage ampere rating, short circuit rating, manufacturer's name, general order number and item number.

C. Mimic Bus: Continuous mimic bus applied to front of switchgear, arranged in single-line diagram format, using symbols and lettered designations consistent with approved final mimic-bus diagram.
1. Mimic-bus segments coordinated with devices in switchgear sections to which applied, to produce a concise visual presentation of principal switchgear components and connections.

2. Medium: Painted graphics, as approved.

3. Color: Contrasting with factory-finish background; selected by DIA Project Manager.

2.8 SOURCE QUALITY CONTROL

A. Before shipment of equipment, perform the following tests and prepare test reports:

1. Production tests on circuit breakers according to ANSI C37.09.
2. Production tests on completed switchgear assembly according to IEEE C37.20.2.

B. Assemble switchgear and equipment in manufacturer's plant and perform the following:

1. Functional tests of all relays, instruments, meters, and control devices by application of secondary three-phase voltage to voltage circuits and injection of current in current transformer secondary circuits.
2. Functional test of all control and trip circuits. Connect test devices into circuits to simulate operation of controlled remote equipment such as circuit-breaker trip coils, close coils, and auxiliary contacts. Test proper operation of relay targets.

C. Prepare equipment for shipment.

1. Provide suitable crating, blocking, and supports so equipment will withstand expected domestic shipping and handling shocks and vibration.
2. Weatherproof equipment for shipment. Close connection openings to prevent entrance of foreign material during shipment and storage.

2.9 FACTORY FINISHES

A. Finish: Manufacturer's standard color finish applied to equipment before shipping.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine elements and surfaces to receive switchgear for compliance with requirements for installation tolerances, required clearances, and other conditions affecting performance.

1. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION

A. Anchor switchgear assembly to 4-inch (100-mm), channel-iron sill embedded in concrete base and attach by bolting.

1. Sills: Select to suit switchgear; level and grout flush into concrete base.
2. Design each fastener and support to carry load indicated by seismic requirements and according to seismic-restraint details. See Section 260548 "Vibration and Seismic Controls for Electrical Systems" for seismic-restraint requirements.
3. Concrete Bases: 4 inches (100 mm) high, reinforced, with chamfered edges. Extend base no less than 3 inches (75 mm) in all directions beyond the maximum dimensions of switchgear, unless otherwise indicated or unless required for seismic anchor support. Construct concrete bases according to Section 260529 "Hangers and Supports for Electrical Systems."

B. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from switchgear units and components.

3.3 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs as specified in Section 260553 "Identification for Electrical Systems."

B. Diagram and Instructions:

1. Frame under clear acrylic plastic on front of switchgear.
 a. Operating Instructions: Printed basic instructions for switchgear, including control and key-interlock sequences and emergency procedures.
 b. System Power Riser Diagrams: Depict power sources, feeders, distribution components, and major loads.

2. Storage for Maintenance: Include a rack or holder, near the operating instructions, for a copy of maintenance manual.

3.4 CONNECTIONS

A. Cable terminations at switchgear are specified in Section 260513 "Medium-Voltage Cables."

B. Tighten bus joints, electrical connectors, and terminals according to manufacturer’s published torque-tightening values.

C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables" and Section 260513 "Medium-Voltage Cables."
3.5 FIELD QUALITY CONTROL

A. Prepare for acceptance tests as follows:

1. Test insulation resistance for each switchgear bus, component, connecting supply, feeder, and control circuit.
2. Test continuity of each circuit.

B. Perform the following field tests and inspections and prepare test reports:

1. Perform each electrical test and visual and mechanical inspection stated in NETA ATS. Certify compliance with test parameters. Perform NETA tests and inspections for each of the following NETA categories:
 a. Switchgear.
 b. Circuit breakers.
 c. Instrument transformers.
 d. Metering and instrumentation.
 e. Ground-fault systems.
 f. Battery systems.
 g. Capacitors.

C. Remove and replace malfunctioning units and retest as specified above.

D. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform infrared scan of each switchgear. Remove front and rear panels so joints and connections are accessible to portable scanner.

 1. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switchgear 11 months after date of Substantial Completion.
 2. Instrument: Use an infrared-scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 3. Record of Infrared Scanning: Prepare a certified report that identifies switchgear checked and that describes infrared-scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.6 ADJUSTING

A. Set field-adjustable, protective-relay trip characteristics according to overcurrent requirements for MV circuit breakers serving feeders.

3.7 CLEANING

A. On completion of installation, inspect interior and exterior of switchgear. Vacuum dirt and debris; do not use compressed air to assist in cleaning. Repair damaged finishes.
3.8 PROTECTION

A. Temporary Heating: Apply temporary heat to switchgear, according to manufacturer’s written instructions, throughout periods when switchgear environment is not controlled for temperature and humidity within manufacturer’s stipulated service conditions.

3.9 DEMONSTRATION

A. Engage a factory-authorized service representative to assist Contractor and train Owner’s maintenance personnel to adjust, operate, and maintain switchgear. Refer to Section 017900 “Demonstration and Training.”

1. Schedule training with Owner, through DIA Project Manager, with at least seven (7) days advance notice.

PART 4 - MEASUREMENT

4.1 METHOD OF MEASUREMENT

A. No separate measurement shall be made for work under this Section.

PART 5 - PAYMENT

5.1 METHOD OF PAYMENT

A. No separate payment will be made for work under this Section. The cost of the work described in this Section shall be included in the Lump Sum Contract price.

END OF SECTION 261300
SECTION 262200 - LOW-VOLTAGE TRANSFORMERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following types of dry-type transformers rated 600 V and less, with capacities up to 1000 kVA:
 1. Distribution transformers.

B. Alternates: Refer to Division 01 Section 012300 "Alternates" for description of Work in this Section affected by alternates.

1.3 ACTION SUBMITTALS

A. Product Data: Include rated nameplate data, capacities, weights, dimensions, minimum clearances, installed devices and features, and performance for each type and size of transformer indicated.
 1. Include data substantiating that materials comply with requirements.

B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

1.4 INFORMATIONAL SUBMITTALS

A. Manufacturer Seismic Qualification Certification: Submit certification that transformers, accessories, and components will withstand seismic forces defined in Section 260548 "Vibration and Seismic Controls for Electrical Systems." Include the following:
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

B. Qualification Data: For testing agency.
C. Source quality-control test reports.
D. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For transformers to include in emergency, operation, and maintenance manuals.
B. As-Built Plans: Submit complete as-built plans of all Work, including interface with other Work, in accordance with requirements as specified in Section 013300 "Submittal Procedures".

1.6 QUALITY ASSURANCE
A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7.
B. Source Limitations: Obtain each transformer type through one source from a single manufacturer.
C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
D. Comply with IEEE C57.12.91, "Test Code for Dry-Type Distribution and Power Transformers."

1.7 DELIVERY, STORAGE, AND HANDLING
A. Temporary Heating: Apply temporary heat according to manufacturer's written instructions within the enclosure of each ventilated-type unit, throughout periods during which equipment is not energized and when transformer is not in a space that is continuously under normal control of temperature and humidity.
B. Handle using only lift eyes and provided brackets. Protect equipment in inclement weather.
1.8 COORDINATION

A. For floor-mounted transformers, coordinate size and location of concrete bases with actual transformer provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

B. For wall-mounted and structure-mounted transformers, coordinate installation of wall-mounting and structure-hanging supports with actual transformer provided.

1.9 CONSTRUCTION WASTE MANAGEMENT

A. Construction waste shall be managed in accordance with provisions of Section 017419 "Construction Waste Management and Disposal". Documentation shall be submitted to satisfy the requirements of that Section.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Match existing and new panelboards in the vicinity, if applicable. Subject to compliance with requirements, provide products by one of the following:
 2. General Electric Company.

2.2 GENERAL TRANSFORMER REQUIREMENTS

A. Description: Factory-assembled and -tested, air-cooled units for 60-Hz service.

B. Cores: Grain-oriented, non-aging silicon steel.

C. Coils: Continuous windings without splices except for taps.
 1. Internal Coil Connections: Brazed or pressure type.
 2. Coil Material:
 3. Transformers rated up to 45kVA: Copper or Aluminum.

2.3 DISTRIBUTION TRANSFORMERS

A. Comply with NFPA 70, and list and label as complying with UL 1561.

B. Provide transformers that are constructed to withstand seismic forces specified in Section 260548.16 "Seismic Controls for Electrical Systems."

C. Cores: One leg per phase.
D. Enclosure: Ventilated, NEMA 250, Type 2.
 1. Core and coil shall be encapsulated within resin compound, sealing out moisture and air.

E. Transformer Enclosure Finish: Comply with NEMA 250.
 1. Finish Color: Gray.

F. Taps for Transformers 25 kVA and Larger: Two 2.5 percent taps above and two 2.5 percent taps below normal full capacity.

G. Insulation Class: 220 deg C, UL-component-recognized insulation system with a maximum of 115 deg C rise above 40 deg C ambient temperature.

H. Energy Efficiency for Transformers Rated 15 kVA and Larger:
 1. Complying with DOE 2016 efficiency requirements.

I. Electrostatic Shielding: Each winding shall have an independent, single, full-width copper electrostatic shield arranged to minimize interwinding capacitance.
 1. Arrange coil leads and terminal strips to minimize capacitive coupling between input and output terminals.
 2. Include special terminal for grounding the shield.
 3. Shield Effectiveness:
 a. Capacitance between Primary and Secondary Windings: Not to exceed 33 picofarads over a frequency range of 20 Hz to 1 MHz.
 b. Common-Mode Noise Attenuation: Minimum of minus 120 dBA at 0.5 to 1.5 kHz; minimum of minus 65 dBA at 1.5 to 100 kHz.
 c. Normal-Mode Noise Attenuation: Minimum of minus 52 dBA at 1.5 to 10 kHz.

J. Wall Brackets: Manufacturer's standard brackets.

K. Low-Sound-Level Requirements: Minimum of 3 dBA less than NEMA ST 20 standard sound levels when factory tested according to IEEE C57.12.91. Maximum sound levels shall be as follows:
 1. 26 to 150 kVA: 39dB.

2.4 IDENTIFICATION DEVICES

A. Nameplates: Engraved, laminated-plastic or metal nameplate for each distribution transformer, mounted with corrosion-resistant screws. Nameplates and label products are specified in Section 260553 "Identification for Electrical Systems."
 1. Include transformer connection data and overload capacity based on rated allowable temperature rise.
2.5 SOURCE QUALITY CONTROL
 A. Test and inspect transformers according to IEEE C57.12.91.
 B. Factory Sound-Level Tests: Conduct sound-level tests on equipment for this Project.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine conditions for compliance with enclosure- and ambient-temperature requirements for each transformer.
 B. Verify that field measurements are as needed to maintain working clearances required by NFPA 70 and manufacturer's written instructions.
 C. Examine walls, floors, roofs, and concrete bases for suitable mounting conditions where transformers will be installed.
 D. Verify that ground connections are in place and requirements in Section 260526 "Grounding and Bonding for Electrical Systems" have been met. Maximum ground resistance shall be 5 ohms at location of transformer.
 E. Environment: Enclosures shall be rated for the environment in which they are located. Covers for NEMA 250, Type 4X enclosures shall not cause accessibility problems.
 F. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
 A. Install wall-mounted transformers level and plumb with wall brackets fabricated by transformer manufacturer.
 1. Brace wall-mounted transformers as specified in Section 260548.16 "Seismic Controls for Electrical Systems."
 B. Install transformers level and plumb on a concrete base with vibration-dampening supports. Locate transformers away from corners and not parallel to adjacent wall surface.
 C. Construct concrete bases and anchor floor-mounting transformers according to manufacturer's written instructions, seismic codes applicable to Project, and requirements in Section 260529 "Hangers and Supports for Electrical Systems."

3.3 CONNECTIONS
 A. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
B. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:

1. Perform each visual and mechanical inspection and electrical test stated in NETA ATS for dry-type, air-cooled, low-voltage transformers. Certify compliance with test parameters.

C. Remove and replace units that do not pass tests or inspections and retest as specified above.

D. Infrared Scanning: Two months after Substantial Completion, perform an infrared scan of transformer connections.

1. Use an infrared-scanning device designed to measure temperature or detect significant deviations from normal values. Provide documentation of device calibration.
2. Perform two (2) follow-up infrared scans of transformers, one at four months and the other at 11 months after Substantial Completion.
3. Prepare a certified report identifying transformer checked and describing results of scanning. Include notation of deficiencies detected, remedial action taken, and scanning observations after remedial action.

E. Test Labeling: On completion of satisfactory testing of each unit, attach a dated and signed "Satisfactory Test" label to tested component.

3.5 ADJUSTING

A. Record transformer secondary voltage at each unit for at least 48 hours of typical occupancy period. Adjust transformer taps to provide optimum voltage conditions at secondary terminals. Optimum is defined as not exceeding nameplate voltage plus 10 percent and not being lower than nameplate voltage minus 3 percent at maximum load conditions. Submit recording and tap settings as test results.

B. Connect buck-boost transformers to provide nameplate voltage of equipment being served, plus or minus 5 percent, at secondary terminals.

3.6 CLEANING
 A. Vacuum dirt and debris; do not use compressed air to assist in cleaning.

PART 4 - MEASUREMENT

4.1 METHOD OF MEASUREMENT
 A. No separate measurement shall be made for work under this Section.

PART 5 - PAYMENT

5.1 METHOD OF PAYMENT
 A. No separate payment will be made for work under this Section. The cost of the work described in this Section shall be included in the Lump Sum Contract price.

END OF SECTION 262200
SECTION 262416 - PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Distribution and branch circuit panelboards.

B. Alternates: Refer to Division 01 Section 012300 "Alternates" for description of Work in this Section affected by alternates.

1.3 DEFINITIONS

A. SVR: Suppressed voltage rating.

B. TVSS: Transient voltage surge suppressor.

1.4 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Panelboards shall withstand the effects of earthquake motions determined according to SEI/ASCE 7.

1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.5 ACTION SUBMITTALS

A. Product Data: For each type of panelboard, switching and overcurrent protective device, transient voltage suppression device, accessory, and component indicated. Include dimensions and manufacturers’ technical data on features, performance, electrical characteristics, ratings, and finishes.

1. Include data substantiating that materials comply with requirements.

B. Shop Drawings: For each panelboard and related equipment.
1. Include dimensioned plans, elevations, sections, and details. Show tabulations of installed devices, equipment features, and ratings.
2. Detail enclosure types and details for types other than NEMA 250, Type 1.
3. Detail bus configuration, current, and voltage ratings.
4. Short-circuit current rating of panelboards and overcurrent protective devices.
5. Include evidence of NRTL listing for series rating of installed devices.
6. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
7. Include wiring diagrams for power, signal, and control wiring.
8. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards. Submit on translucent log-log graph paper; include selectable ranges for each type of overcurrent protective device.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified testing agency.

B. Field Quality-Control Reports:
 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

C. Panelboard Schedules: For installation in panelboards

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
 1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
 2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.

B. As-Built Plans: Submit complete as-built plans of all Work, including interface with other Work, in accordance with requirements as specified in Section 013300 "Submittal Procedures".

1.8 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Keys: Two (2) spares for each type of panelboard cabinet lock.
1.9 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

B. Source Limitations: Obtain panelboards, overcurrent protective devices, components, and accessories from single source from single manufacturer.

C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. Comply with NEMA PB 1.

F. Comply with NFPA 70.

1.10 DELIVERY, STORAGE, AND HANDLING

A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.

B. Handle and prepare panelboards for installation according to NEMA PB 1.

1.11 PROJECT CONDITIONS

A. Environmental Limitations:
 1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 a. Ambient Temperature: Not exceeding 30 deg F (minus 35 deg C) to plus 120 deg F (plus 49 deg C).
 b. Altitude: 5500 feet (1677 m)

B. Service Conditions: NEMA PB 1, usual service conditions, as follows:
 1. Ambient temperatures within limits specified.
 2. Altitude: 5500 feet
C. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:

1. Any power outages necessary to install or test electrical systems and/or equipment shall be coordinated with Denver International Airport Maintenance/Engineering. A written shutdown request form shall be submitted to and approved by the DEN Project Manager two (2) weeks prior to the shutdown.
2. Do not proceed with interruption of electric service without DEN Project Manager's written permission.
3. Comply with NFPA 70E.

1.12 COORDINATION

A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

1.13 WARRANTY

A. Special Warranty: for Surge Suppression Devices Manufacturer's standard form in which manufacturer agrees to repair or replace transient voltage suppression devices that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Minimum five (5) years from date of Substantial Completion.

1.14 CONSTRUCTION WASTE MANAGEMENT

A. Construction waste shall be managed in accordance with provisions of Section 017419 "Construction Waste Management and Disposal". Documentation shall be submitted to satisfy the requirements of that Section.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PANELBOARDS

A. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces defined in Section "Vibration and Seismic Controls for Electrical Systems."

B. Enclosures: Surface-mounted cabinets.

1. Rated for environmental conditions at installed location.
a. Indoor Dry and Clean Locations: NEMA 250, Type 1.

2. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box.

3. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover.

4. Skirt for Surface-Mounted Panelboards: Same gage and finish as panelboard front with flanges for attachment to panelboard, wall, and ceiling or floor.

5. Gutter Extension and Barrier: Same gage and finish as panelboard enclosure; integral with enclosure body. Arrange to isolate individual panel sections.

6. Finishes:

a. Panels and Trim: Steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.

b. Back Boxes: Same finish as panels and trim.

7. Enclosures shall be at least 20 inches wide made from galvanized sheet steel in the sizes and NEMA types indicated, code gauge, minimum 16 gauge thickness.

C. In all cases where the conductor to be connected to the busbar is 1/0 or larger cable, the connection shall be made with a 2-hole compression lug. Torque all lug, wire and bus terminations to the manufacturers recommendation using a micrometer type wrench.

D. Incoming Mains Location: Top.

E. Phase, Neutral, and Ground Buses:

2. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.

F. Conductor Connectors: Suitable for use with conductor material and sizes.

2. Main and Neutral Lugs: Mechanical type.

3. Ground Lugs and Bus-Configured Terminators: Mechanical type.

4. Feed-Through Lugs: Mechanical type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.

5. Subfeed (Double) Lugs: Mechanical type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.

6. Gutter-Tap Lugs: Mechanical type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.

G. Future Devices: Mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.

I. Breakers shall have built-in test points for testing long delay, and instantaneous functions of the breaker by means of a 120 volt operated test kit.

J. General Requirements for Branch Circuit Panelboards:

1. Bolt-on type, heavy-duty, quick-make, quick-break, single- and multi-pole circuit breakers, of the types specified herein, shall be provided for each circuit with toggle handles that indicate when unit has tripped.

2. Circuit breakers shall be thermal magnetic type with common type handle for all multiple pole circuit breakers. Circuit breakers shall be minimum 100-ampere frame and up through 100-ampere trip sizes shall take up the same pole spacing. Circuit breakers shall be UL listed as Type SWD for lighting circuits.
 a. Circuit breaker handle locks shall be provided for all circuits that supply exit signs, emergency lights, energy management and control system (EMCS) panels and fire alarm panels.
 b. Main circuit breaker, when shown, shall be vertical mounted top or bottom as required. Chassis mounted reverse fed main circuit breaker is not acceptable.

3. Circuit breakers shall have a minimum interrupting rating as shown on plans.

4. Circuit breakers shall be individual electrical metering mounted to the load-side lugs of the molded-case circuit breaker. These metering and communication modules shall be Eaton PM3 or approved equal for other switchgear manufacturers.

2.2 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 3. or approved equal.

B. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with fully-rated interrupting capacity to meet available fault currents.

2. Molded-Case Circuit-Breaker (MCCB) Features and Accessories:
 a. Standard frame sizes, trip ratings, and number of poles.
 b. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor materials.
 c. Multipole units enclosed in a single housing or factory assembled to
PART 3 - EXECUTION

3.1 EXAMINATION

A. Receive, inspect, handle, and store panelboards according to NEMA PB 1.1.

B. Examine panelboards before installation. Reject panelboards that are damaged or rusted or have been subjected to water saturation.

C. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install panelboards and accessories according to NEMA PB 1.1.

B. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.

C. Comply with mounting and anchoring requirements specified in Section "Vibration and Seismic Controls for Electrical Systems."

D. Mount top of trim 78 inches (1982 mm) above finished floor unless matching height of existing equipment or approved otherwise.

E. Mount panelboard cabinet plumb and rigid without distortion of box. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.

F. Install overcurrent protective devices and controllers not already factory installed.
 1. Set field-adjustable, circuit-breaker trip ranges.

G. Install filler plates in unused spaces.

H. Comply with NECA 1.

3.3 PANELBOARD SCHEDULE

A. Panelboards shall be furnished and equipped as follows, except as otherwise
specified:

Manufacturer:
Eaton
GE
Or approved equal
By other manufacturer.

3.4 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with Section "Identification for Electrical Systems."

B. Create a directory to indicate installed circuit loads; incorporate Owner's final room designations. Clearly identify the load on each circuit, equipment serviced and location. Revise directory to reflect circuiting changes required to balance phase loads. In all instances where a contractor installs or disconnects a circuit in any panel, a newly typed panel schedule shall be furnished. The new or revised panel schedule shall have the date and Contractor's name typed at the top right hand corner. Obtain approval before installing. Use a computer or typewriter to create directory; handwritten directories are not acceptable.

C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Section "Identification for Electrical Systems."

D. Device Nameplates: Label each branch circuit device in distribution panelboards with a nameplate complying with requirements for identification specified in Section "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL

A. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Acceptance Testing Preparation:

1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
2. Test continuity of each circuit.
C. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 3. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than sixty (60) days after Final Acceptance, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each panelboard eleven (11) months after date of Substantial Completion.
 c. Instruments and Equipment:
 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

D. Panelboards will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

F. Submit torque values for all connections with a torque schedule and witness signature.

3.6 ADJUSTING
 A. Adjust moving parts and operable component to function smoothly, and lubricate as recommended by manufacturer.

3.7 PROTECTION
 A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions.

PART 4 - MEASUREMENT

4.1 METHOD OF MEASUREMENT
 A. No separate measurement shall be made for work under this Section.
PART 5 - PAYMENT

5.1 PAYMENT

A. No separate payment will be made for work under this Section. The cost of the work described in this Section shall be included in the Lump Sum Contract price.

END OF SECTION 262416
SECTION 262500 - ENCLOSED BUS ASSEMBLIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Outdoor service-entrance cable-rated, non-segregated bus duct.

B. Alternates: Refer to Division 01 Section 012300 "Alternates" for description of Work in this Section affected by alternates.

1.3 DEFINITIONS

A. SPD: Surge Protective Devices.

1.4 ACTION SUBMITTALS

A. Shop Drawings: For each type of bus assembly.

1. Show fabrication and installation details for enclosed bus assemblies. Include plans, elevations, and sections of components. Designate components and accessories, including clamps, brackets, hanger rods, connectors, straight lengths, and fittings.

2. Show fittings, materials, fabrication, and installation methods for listed fire-stop barriers and weather barriers.

3. Indicate required clearances, method of field assembly, and location and size of each field connection.

4. Detail connections to switchboards.

5. Seismic-Restraint Details: Signed and sealed by a qualified professional engineer.

 a. Design Calculations: Calculate requirements for selecting seismic restraints.

 b. Detail fabrication, including anchorages and attachments to structure and to supported equipment.
1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Floor plans and sections, drawn to scale. Include scaled bus-assembly layouts and relationships between components and adjacent structural, mechanical, and electrical elements. Show the following:

1. Vertical and horizontal enclosed bus-assembly runs, offsets, and transitions.
2. Clearances for access above and to the side of enclosed bus assemblies.
3. Vertical elevation of enclosed bus assemblies above the floor or bottom of structure.
4. Support locations, type of support, and weight on each support.

B. Location of adjacent construction elements including light fixtures, HVAC and plumbing equipment, fire sprinklers and piping, signal and control devices, and other equipment.

C. Qualification Data: For professional engineer and testing agency.

D. Product Certificates: For each type of enclosed bus assembly, signed by product manufacturer.

E. Field quality-control test reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For enclosed bus assemblies to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the International Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.

1. Testing Agency's Field Supervisor: Person currently certified by the International Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3.

B. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.

C. Source Limitations: Obtain enclosed bus assemblies and plug-in devices through one source from a single manufacturer.
D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

E. Comply with NEMA BU 1, "Busways."

F. Comply with NFPA 70.

1.8 DELIVERY, STORAGE, AND HANDLING
A. Deliver, store, and handle enclosed bus assemblies according to NEMA BU 1.1, "General Instructions for Proper Handling, Installation, Operation and Maintenance of Busway Rated 600 Volts or Less."

1.9 PROJECT CONDITIONS
A. Derate enclosed bus assemblies for continuous operation at indicated ampere ratings for use in direct sunlight and at ambient temperatures not exceeding 122 deg F (50 deg C).

1.10 COORDINATION
A. Coordinate layout and installation of enclosed bus assemblies and suspension system with other construction that penetrates ceilings or floors or is supported by them, including light fixtures, HVAC equipment, fire-suppression system, and partition assemblies.

B. Coordinate size and location of concrete curbs around openings for vertical bus. Concrete, reinforcement, and formwork requirements are specified with concrete.

1.11 CONSTRUCTION WASTE MANAGEMENT
A. Construction waste shall be managed in accordance with provisions of Section 017419 "Construction Waste Management and Disposal". Documentation shall be submitted to satisfy the requirements of that Section.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Calvert Company (The).
2. Eaton Electrical Inc.; Cutler-Hammer Products.
3. Electric Busway Corp.
4. General Electric Company; Electrical Distribution & Control Division.
5. Siemens Energy & Automation, Inc.

2.2 ENCLOSED BUS ASSEMBLIES

A. Outdoor service-cable-rated feeder-Bus Assemblies: NEMA BU 1, low-impedance bus assemblies in, aluminum housing; single-bolt joints; ratings as indicated with integral vents and insect screens.

1. Seismic Fabrication Requirements: Fabricate mounting provisions and attachments for feeder-bus assemblies with reinforcement strong enough to withstand seismic forces defined in Section 260548.16 "Seismic Controls for Electrical Systems" when mounting provisions and attachments are anchored to building structure.
2. Voltage: 5KV minimum, three-wire and ground bus.
3. Temperature Rise: 55 deg C above 40 deg C ambient maximum for continuous rated current.
5. Ground:
 a. 50 percent capacity internal bus bars of material matching bus material.
6. Enclosure: Weatherproof, steel or aluminum with manufacturer's standard finish, sealed seams, drains, and removable closures.
7. Fittings and Accessories: Manufacturer's standard.
8. Mounting: Arranged flat, edgewise, or vertically without derating.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Support bus assemblies independent of supports for other elements such as equipment enclosures at connections to panelboards and switchboards, pipes, conduits, ceilings, and ducts.

1. Design each fastener and support to carry load indicated by seismic requirements and to comply with seismic-restraint details according to Section 260548.16 "Seismic Controls for Electrical Systems."
2. Design each fastener and support to carry 200 lb (90 kg) or 4 times the weight of bus assembly, whichever is greater.
3. Support bus assembly to prevent twisting from eccentric loading.
4. Fasten supports securely to building structure according to Section 260529 "Hangers and Supports for Electrical Systems."

B. Install expansion fittings at locations where bus assemblies cross building expansion joints or where shown on plans. Install at other locations so distance between...
expansion fittings does not exceed manufacturer’s recommended distance between fittings.

C. Construct rated fire-stop assemblies where bus assemblies penetrate fire-rated elements such as walls, floors, and ceilings. Seal around penetrations according to Section 078413 “Penetration Firestopping.”

D. Install weatherseal fittings and flanges where bus assemblies penetrate exterior elements such as walls or roofs. Seal around openings to make weathertight. See Section 079200 "Joint Sealants" for materials and application.

E. Coordinate bus-assembly terminations to equipment enclosures to ensure proper phasing, connection, and closure.

F. Tighten bus-assembly joints with torque wrench or similar tool recommended by bus-assembly manufacturer. Tighten joints again after bus assemblies have been energized for 30 days.

G. Connect bus assemblies and components to wiring system and to ground as indicated on drawings and as instructed by manufacturer.

1. Tighten electrical connectors and terminals according to manufacturer’s published torque-tightening values. If manufacturer’s torque values are not indicated, use those specified in UL 486A.

3.2 CONNECTIONS

A. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

B. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

A. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.

B. Perform tests and inspections and prepare test reports.

1. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Tests and Inspections:

1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
D. Remove and replace units that do not pass tests and inspections and retest as specified above.

E. Infrared Scanning: Two months after Substantial Completion, perform an infrared scan of bus assembly including joints.
 1. Use an infrared-scanning device designed to measure temperature or detect significant deviations from normal values. Provide documentation of device calibration.
 2. Perform two (2) follow-up infrared scans of bus assembly, one at four (4) months and the other at eleven (11) months after Substantial Completion.
 3. Prepare a certified report identifying bus assembly checked and describing results of scanning. Include notation of deficiencies detected, remedial action taken, and scanning observations after remedial action.

F. Test Labeling: On completion of satisfactory testing of each unit, attach a dated and signed “Satisfactory Test” label to tested component.

3.4 CLEANING
 A. Vacuum dirt and debris; do not use compressed air to assist in cleaning.

3.5 PROTECTION
 A. Provide final protection to ensure that moisture does not enter bus assembly.

PART 4 - MEASUREMENT

4.1 METHOD OF MEASUREMENT
 A. No separate measurement shall be made for work under this Section.

PART 5 - PAYMENT

5.1 METHOD OF PAYMENT
 A. No separate payment will be made for work under this Section. The cost of the work described in this Section shall be included in the Lump Sum Contract price.

END OF SECTION 262500
SECTION 262923 - VARIABLE-FREQUENCY MOTOR CONTROLLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes integrated lineups of pre-assembled, combination 4160V VFCs for speed control of three-phase, squirrel-cage induction motors.

B. Section includes stand-alone pre-assembled, combination VFCs rated 600V and less for speed control of three-phase squirrel-cage induction motors.

C. Alternates: Refer to Division 01 Section 012300 "Alternates" for description of Work in this Section affected by alternates.

1.3 DEFINITIONS

A. BAS: Building automation system.

B. CE: Conformite Europeene (European Compliance).

C. CPT: Control power transformer.

D. EMI: Electromagnetic interference.

E. IGBT: Insulated-gate bipolar transistor.

F. LAN: Local area network.

G. LED: Light-emitting diode.

H. MCP: Motor-circuit protector.

I. NC: Normally closed.

J. NO: Normally open.

K. OCPD: Overcurrent protective device.

L. PCC: Point of common coupling.
M. PID: Control action, proportional plus integral plus derivative.
N. PWM: Pulse-width modulated.
O. RFI: Radio-frequency interference.
P. TDD: Total demand (harmonic current) distortion.
Q. THD(V): Total harmonic voltage demand.
R. VFC: Variable-frequency motor controller.

1.4 PERFORMANCE REQUIREMENTS
A. Seismic Performance: VFCs shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.5 ACTION SUBMITTALS
A. Product Data: For each type and rating of VFC indicated. Include features, performance, electrical ratings, operating characteristics, shipping and operating weights, and furnished specialties and accessories.
 1. Include data substantiating that materials comply with requirements.
B. LEED Submittals:
 1. Product Data for Credit EA 5: For continuous metering equipment for energy consumption.
C. Shop Drawings: For each VFC indicated. Include dimensioned plans, elevations, and sections; and conduit entry locations and sizes, mounting arrangements, and details, including required clearances and service space around equipment.
 1. Show tabulations of installed devices, equipment features, and ratings. Include the following:
 a. Each installed unit's type and details.
 b. Factory-installed devices.
 c. Enclosure types and details.
 d. Nameplate legends.
 e. Short-circuit current (withstand) rating of enclosed unit.
 f. Features, characteristics, ratings, and factory settings of each VFC and installed devices.
 g. Specified modifications.
2. Schematic and Connection Wiring Diagrams: For power, signal, and control wiring.

1.6 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Floor plans, drawn to scale, showing dimensioned layout, required working clearances, and required area above and around VFCs. Show VFC layout and relationships between electrical components and adjacent structural and mechanical elements. Show support locations, type of support, and weight on each support. Indicate field measurements.

B. Qualification Data: For qualified testing agency.

C. Seismic Qualification Certificates: For VFCs, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based, and their installation requirements.

D. Product Certificates: For each VFC, from manufacturer.

E. Harmonic Analysis Study and Report: Comply with IEEE 399 and NETA Acceptance Testing Specification; identify the effects of nonlinear loads and their associated harmonic contributions on the voltages and currents throughout the electrical system. Analyze designated operating scenarios, including recommendations for VFC input filtering to limit TDD and THD(V) at each VFC to specified levels.

F. Source quality-control reports.

G. Field quality-control reports.

H. Load-Current and Overload-Relay Heater List: Compile after motors have been installed, and arrange to demonstrate that selection of heaters suits actual motor nameplate, full-load currents.

I. Load-Current and List of Settings of Adjustable Overload Relays: Compile after motors have been installed and arrange to demonstrate that switch settings for motor-running overload protection suit actual motors to be protected.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For VFCs to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
1. Manufacturer's written instructions for testing and adjusting thermal-magnetic
circuit breaker and MCP trip settings.
2. Manufacturer's written instructions for setting field-adjustable overload relays.
3. Manufacturer's written instructions for testing, adjusting, and reprogramming
microprocessor control modules.
4. Manufacturer's written instructions for setting field-adjustable timers, controls,
and status and alarm points.
5. Manufacturer's installation information including equipment anchorage
provisions.

B. Certified production test reports.

C. Seismic certification.

D. Recommended renewal parts list.

E. Torque Values: Submit torque values for all connections with a torque schedule and
witness signature.

F. As-Built Plans: Submit complete as-built plans of all Work, including interface with
other Work, in accordance with requirements as specified in Section 013300
"Submittal Procedures".

1.8 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials described below that match products installed and that are
packaged with protective covering for storage and identified with labels describing
contents.

1. Power Fuses: Equal to ten (10) percent of quantity installed for each size and
type, but no fewer than three (3) of each size and type.
2. Control Power Fuses: Equal to ten (10) percent of quantity installed for each
size and type, but no fewer than two (2) of each size and type.
3. Auxiliary Contacts: Furnish one (1) spare for each size and type of magnetic
controller installed.
4. Power Contacts: Furnish three (3) spares for each size and type of magnetic
contactor installed.

1.9 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.

1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise
on-site testing.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in
NFPA 70, by a qualified testing agency, and marked for intended location and
application.
C. Comply with the National Electrical Code and the National Electric Safety Code and NFPA 70E, Electrical Safety in the Workplace as adopted and amended by the City and County of Denver.

D. The Manufacturer of this equipment shall have been pre-qualified by Owner.

E. When requested by the DEN Project Manager, an acceptable list of installations with similar equipment shall be provided demonstrating compliance with this requirement.

F. Installers shall specialize in installation of equipment with a minimum of five (5) years of experience.

G. IEEE Compliance: Fabricate and test VFC according to IEEE 344 to withstand seismic forces defined in Section 260548 "Vibration and Seismic Controls for Electrical Systems."

1.10 DELIVERY, STORAGE, AND HANDLING

A. If stored in space that is not permanently enclosed and air conditioned, remove loose packing and flammable materials from inside controllers and

1.11 PROJECT CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation, capable of driving full load without derating, under the following conditions unless otherwise indicated:

1. Ambient Temperature Range: 32 deg F (minus 35 deg C) to 120 deg F (49 deg C).
2. Ambient Storage Temperature: Minus 30 deg F (minus 35 deg C) to 140 deg F (60 deg C)
3. Humidity: Less than 95 percent (noncondensing).
4. Altitude: 5500 feet (1677 m) above sea level.

B. Interruption of Existing Electrical Systems: Do not interrupt electrical systems in facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service according to requirements indicated:

1. Any power outages necessary to install or test electrical systems and/or equipment shall be coordinated with Denver International Airport Maintenance/Engineering. A written shutdown request form shall be submitted to and approved by the DEN Project Manager two (2) weeks prior to the shutdown.
2. Indicate method of providing temporary electrical service.
3. Do not proceed with interruption of electrical systems without DEN Project Manager's written permission.
4. Comply with NFPA 70E.
C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for VFCs, including clearances between VFCs, and adjacent surfaces and other items.

D. Field Measurements: Verify existing dimensions by field measurements. Verify clearances and locate obstructions within manufacturing and installation tolerances of enclosed assemblies.

1.12 COORDINATION

A. Coordinate features of motors, load characteristics, installed units, and accessory devices to be compatible with the following:

1. Torque, speed, and horsepower requirements of the load.
2. Ratings and characteristics of supply circuit and required control sequence.
3. Ambient and environmental conditions of installation location.

B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchor-bolt inserts into bases.

C. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

D. The drawings are diagrammatic and indicate the general arrangement of electrical work. Locations are approximate and shall be subject to minor modifications as dictated by field conditions and as directed by DEN Project Manager.

1.13 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace VFCs that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Minimum five (5) years from date of Substantial Completion.

1.14 CONSTRUCTION WASTE MANAGEMENT

1. Construction waste shall be managed in accordance with provisions of Section 017419 "Construction Waste Management and Disposal". Documentation shall be submitted to satisfy the requirements of that Section.

PART 2 - PRODUCTS

2.1 INTEGRATED MANUFACTURED UNITS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. ABB.
2. Danfoss Inc.; Danfoss Drives Div.

B. General Requirements for VFCs: Comply with NEMA ICS 7, NEMA ICS 61800-2, and UL 508C.

C. Application: variable torque.

D. VFC Description: 4160V three-phase variable-frequency power converter consisting of rectifier, dc bus, and 24-pulse IGBT PWM inverter) factory packaged in an enclosure, with integral disconnecting means and overcurrent and overload protection; listed and labeled by an NRTL as a complete unit; arranged to provide self-protection, protection, and variable-speed control of one or more three-phase induction motors by adjusting output voltage and frequency.

1. Units suitable for operation of 4160V Variable torque motors.
2. Listed and labeled for integrated short-circuit current (withstand) rating by an NRTL acceptable to authorities having jurisdiction. VFCs must be able to withstand short-circuit currents shown on one-line diagram.

E. Design and Rating: Match load type, such as fans, blowers, and pumps; and type of connection used between motor and load such as direct or through a power-transmission connection.

F. Output Rating: Three-phase; 10 to 60 Hz, with voltage proportional to frequency throughout voltage range; maximum voltage equals input voltage.

G. Unit Operating Requirements:

1. Input AC Voltage Tolerance: Plus 10 and minus 10 percent of VFC input voltage rating.
2. Input AC Voltage Unbalance: Not exceeding 5 percent.
3. Input Frequency Tolerance: Plus or minus 3 percent of VFC frequency rating.
4. Minimum Efficiency: 97.5 percent at 60 Hz, full load.
5. Minimum Displacement Primary-Side Power Factor: 98 percent under any load or speed condition.
7. Ambient Temperature Rating: 32 deg F (minus 35 deg C) to 120 deg F (49 deg C).
8. Ambient Storage Temperature Rating: Minus 30 deg F (minus 35 deg C) to 120 deg F (49 deg C).
10. Altitude Rating: 5500 feet (1677 m) above sea level.
12. Overload Capability: 1.5 times the base load current for 60 seconds; minimum of 1.8 times the base load current for three seconds.
13. Starting Torque: Minimum 100 percent of rated torque from 3 to 60 Hz.
14. Speed Regulation: Plus or minus 5 percent.
15. Output Carrier Frequency: Selectable; 0.5 to [15] <insert number> kHz.
16. Stop Modes: Programmable; includes fast, free-wheel, and dc injection braking.

H. Inverter Logic: Microprocessor based, 32 bit, isolated from all power circuits.

I. Isolated Control Interface: Allows VFCs to follow remote-control signal over a minimum 40:1 speed range.

J. Internal Adjustability Capabilities:

1. Minimum Speed: 5 to 25 percent of maximum rpm.
2. Maximum Speed: 80 to 100 percent of maximum rpm.
3. Acceleration: 0.1 to 999.9 seconds.
4. Deceleration: 0.1 to 999.9 seconds.
5. Current Limit: 30 to minimum of 150 percent of maximum rating.

K. Self-Protection and Reliability Features:

1. Input transient protection by means of surge suppressors to provide three-phase protection against damage from supply voltage surges 10 percent or more above nominal line voltage.
2. Loss of Input Signal Protection: Selectable response strategy, including speed default to a percent of the most recent speed, a preset speed, or stop; with alarm.
4. Inverter overcurrent trips.
5. VFC and Motor Overload/Over-temperature Protection: Microprocessor-based thermal protection system for monitoring VFGs and motor thermal characteristics, and for providing VFC over-temperature and motor overload alarm and trip; settings selectable via the keypad; NRTL approved.
6. Critical frequency rejection, with three (3) selectable, adjustable deadbands.
7. Instantaneous line-to-line and line-to-ground overcurrent trips.
10. Short-circuit protection.
11. Motor over-temperature fault.

L. Automatic Reset/Restart: Attempt three restarts after drive fault or on return of power after an interruption and before shutting down for manual reset or fault correction; adjustable delay time between restart attempts.

M. Power-Interruption Protection: To prevent motor from re-energizing after a power interruption until motor has stopped, unless "Bidirectional Autospeed Search" feature is available and engaged.

N. Bidirectional Autospeed Search: Capable of starting VFC into rotating loads spinning in either direction and returning motor to set speed in proper direction, without causing damage to drive, motor, or load.
O. Torque Boost: Automatically varies starting and continuous torque to at least 1.5 times the minimum torque to ensure high-starting torque and increased torque at slow speeds.

P. Motor Temperature Compensation at Slow Speeds: Adjustable current fall-back based on output frequency for temperature protection of self-cooled, fan-ventilated motors at slow speeds.

Q. Integral Input Fused Isolation Switch with vacuum contactor. OC with pad-lockable, door-mounted handle mechanism.

1. Disconnect Rating: Not less than 115 percent of VFC input current rating.
2. Disconnect Rating: Not less than 115 percent of NFPA 70 motor full-load current rating or VFC input current rating, whichever is larger.
3. Auxiliary Contacts: NO/NC, arranged to activate before switch blades open.
4. Auxiliary contacts "a" and "b" arranged to activate with circuit-breaker handle.
5. NO alarm contact that operates only when circuit breaker has tripped.

2.2 480V UNITS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. ABB.
2. Danfoss Inc.; Danfoss Drives Div.

B. General Requirements for VFCs: Comply with NEMA ICS 7, NEMA ICS 61800-2, and UL 508C.

C. Application: variable torque.

D. VFC Description: 480V three-phase variable-frequency power converter consisting of rectifier, dc bus, and 24-pulse IGBT PWM inverter) factory packaged in an enclosure, with integral disconnecting means and overcurrent and overload protection; listed and labeled by an NRTL as a complete unit; arranged to provide self-protection, protection, and variable-speed control of one or more three-phase induction motors by adjusting output voltage and frequency.

1. Units suitable for operation of 480V Variable torque motors.
2. Listed and labeled for integrated short-circuit current (withstand) rating by an NRTL acceptable to authorities having jurisdiction. VFCs must be able to withstand short-circuit currents shown on one-line diagram.

E. Design and Rating: Match load type, such as fans, blowers, and pumps; and type of connection used between motor and load such as direct or through a power-transmission connection.
F. Output Rating: Three-phase; 10 to 60 Hz, with voltage proportional to frequency throughout voltage range; maximum voltage equals input voltage.

G. Unit Operating Requirements:
 1. Input AC Voltage Tolerance: Plus 10 and minus 10 percent of VFC input voltage rating.
 2. Input AC Voltage Unbalance: Not exceeding 5 percent.
 3. Input Frequency Tolerance: Plus or minus 3 percent of VFC frequency rating.
 4. Minimum Efficiency: 97.5 percent at 60 Hz, full load.
 5. Minimum Displacement Primary-Side Power Factor: 98 percent under any load or speed condition.
 7. Ambient Temperature Rating: 32 deg F (minus 35 deg C) to 120 deg F (49 deg C).
 8. Ambient Storage Temperature Rating: Minus 30 deg F (minus 35 deg C) to 120 deg F (49 deg C).
 10. Altitude Rating: 5500 feet (1677 m) above sea level.
 12. Overload Capability: 1.5 times the base load current for 60 seconds; minimum of 1.8 times the base load current for three seconds.
 13. Starting Torque: Minimum 100 percent of rated torque from 3 to 60 Hz.
 14. Speed Regulation: Plus or minus 5 percent.
 15. Output Carrier Frequency: Selectable; 0.5 to [15] kHz.
 16. Stop Modes: Programmable; includes fast, free-wheel, and dc injection braking.

H. Inverter Logic: Microprocessor based, 32 bit, isolated from all power circuits.

I. Isolated Control Interface: Allows VFCs to follow remote-control signal over a minimum 40:1 speed range.

J. Internal Adjustability Capabilities:
 1. Minimum Speed: 5 to 25 percent of maximum rpm.
 2. Maximum Speed: 80 to 100 percent of maximum rpm.
 3. Acceleration: 0.1 to 999.9 seconds.
 4. Deceleration: 0.1 to 999.9 seconds.
 5. Current Limit: 30 to minimum of 150 percent of maximum rating.

K. Self-Protection and Reliability Features:
 1. Input transient protection by means of surge suppressors to provide three-phase protection against damage from supply voltage surges 10 percent or more above nominal line voltage.
 2. Loss of Input Signal Protection: Selectable response strategy, including speed default to a percent of the most recent speed, a preset speed, or stop; with alarm.
4. Inverter overcurrent trips.
5. VFC and Motor Overload/Over-temperature Protection: Microprocessor-based thermal protection system for monitoring VFCs and motor thermal characteristics, and for providing VFC over-temperature and motor overload alarm and trip; settings selectable via the keypad; NRTL approved.
6. Critical frequency rejection, with three (3) selectable, adjustable deadbands.
7. Instantaneous line-to-line and line-to-ground overcurrent trips.
10. Short-circuit protection.
11. Motor over-temperature fault.

L. Automatic Reset/Restart: Attempt three restarts after drive fault or on return of power after an interruption and before shutting down for manual reset or fault correction; adjustable delay time between restart attempts.

M. Power-Interruption Protection: To prevent motor from re-energizing after a power interruption until motor has stopped, unless "Bidirectional Autospeed Search" feature is available and engaged.

N. Bidirectional Autospeed Search: Capable of starting VFC into rotating loads spinning in either direction and returning motor to set speed in proper direction, without causing damage to drive, motor, or load.

O. Torque Boost: Automatically varies starting and continuous torque to at least 1.5 times the minimum torque to ensure high-starting torque and increased torque at slow speeds.

P. Motor Temperature Compensation at Slow Speeds: Adjustable current fall-back based on output frequency for temperature protection of self-cooled, fan-ventilated motors at slow speeds.

Q. Integral Input Fused Isolation Switch with vacuum contactor. OC with pad-lockable, door-mounted handle mechanism.

1. Disconnect Rating: Not less than 115 percent of VFC input current rating.
2. Disconnect Rating: Not less than 115 percent of NFPA 70 motor full-load current rating or VFC input current rating, whichever is larger.
3. Auxiliary Contacts: NO/NC, arranged to activate before switch blades open.
4. Auxiliary contacts "a" and "b" arranged to activate with circuit-breaker handle.
5. NO alarm contact that operates only when circuit breaker has tripped.

2.3 CONTROLS AND INDICATION

A. Status Lights: Door-mounted LED indicators displaying the following conditions:
1. Power on.
2. Run.
3. Overvoltage.
4. Line fault.
5. Overcurrent.

B. Panel-Mounted Operator Station: Manufacturer's standard front-accessible, sealed keypad and plain-English language digital display; allows complete programming, program copying, operating, monitoring, and diagnostic capability.

1. Keypad: In addition to required programming and control keys, include keys for HAND, OFF, and AUTO modes.
2. Security Access: Provide electronic security access to controls through identification and password with at least three levels of access: View only; view and operate; and view, operate, and service.
 a. Control Authority: Supports at least four conditions: Off, local manual control at VFC, local automatic control at VFC, and automatic control through a remote source.

C. Historical Logging Information and Displays:

1. Real-time clock with current time and date.
2. Running log of total power versus time.
3. Total run time.
4. Fault log, maintaining last four (4) faults with time and date stamp for each.

D. Indicating Devices: Digital display mounted flush in VFC door and connected to display VFC parameters including, but not limited to:

1. Output frequency (Hz).
5. Motor torque (percent).
6. Fault or alarming status (code).
7. PID feedback signal (percent).
8. DC-link voltage (V dc).
9. Set point frequency (Hz).
10. Motor output voltage (V ac).

E. Control Signal Interfaces:

1. Electric Input Signal Interface:
 a. A minimum of two] programmable analog inputs: 4- to 20-mA dc
 b. A minimum of six multifunction programmable digital inputs.
2. Remote Signal Inputs: Capability to accept any of the following speed-setting input signals from the BAS or other control systems:
 a. 0- to 10-V dc.
 b. 4- to 20-mA dc.
 c. Potentiometer using up/down digital inputs.
 d. Fixed frequencies using digital inputs.

3. Output Signal Interface: Programmable analog output signal(s) for the CUP BacNet operating system (>), which can be configured for any or all of the following:
 a. Output frequency (Hz).
 b. Output current (load).
 c. DC-link voltage (V dc).
 d. Motor torque (percent).
 e. Motor speed (rpm).
 f. Set point frequency (Hz).

4. Remote Indication Interface: A minimum of three programmable dry-circuit relay outputs (120-V ac, 1 A) for remote indication of the following:
 a. Motor running.
 b. Set point speed reached.
 c. Fault and warning indication (overtemperature or overcurrent).
 d. PID high- or low-speed limits reached.

F. PID Control Interface: Provides closed-loop set point, differential feedback control in response to dual feedback signals. Allows for closed-loop control of fans and pumps for pressure, flow, or temperature regulation.

 1. Number of Loops: Two (2)

G. BAS Interface: Factory-installed hardware and software to enable the BAS to monitor, control, and display VFC status and alarms[and energy usage]. Allows VFC to be used with an external system within a multidrop LAN configuration; settings retained within VFC’s nonvolatile memory.

 1. Network Communications Ports: Ethernet and [RS-422/485].
 2. Embedded BAS Protocols for Network Communications: ASHRAE 135 BACnet protocols accessible via the communications ports.

2.4 LINE CONDITIONING AND FILTERING

A. Input Line Conditioning: Based on the harmonic analysis study and report, provide input filtering, as required, to limit TDD at input terminals of all VFCs to less than 5 percent and THD(V) to 5 percent.
B. Input Line Conditioning: Based on the harmonic analysis study and report, provide input filtering, as required, to limit TDD and THD(V) at the defined PCC per IEEE Standard 519.

C. Input Line Conditioning: Phase =shift transformer.

D. EMI/RFI Filtering: CE marked; certify compliance with IEC 61800-3 for Category C2.

2.5 OPTIONAL FEATURES

A. Remote digital operator kit.

B. Communication Port: RS-232 port, for connection to existing Utility Plant BacNet system.

2.6 ENCLOSURES

A. VFC Enclosures: NEMA 1A with gasketing, to comply with environmental conditions at installed location.

2.7 ACCESSORIES

A. General Requirements for Control-Circuit and Pilot Devices: NEMA ICS 5; factory installed in VFC enclosure cover unless otherwise indicated.

 a. Push Buttons: Covered]
 b. Pilot Lights: LED].
 c. Selector Switches: Push button.

C. Supplemental Digital Meters:

1. Elapsed-time meter.
2. Kilowatt meter.

D. Cooling Fan and Exhaust System: For NEMA 250, Type 1A: intake and exhaust grills and filters; power [120] obtained from integral CPT.
2.8 SOURCE QUALITY CONTROL

A. Testing: Test and inspect VFCs according to requirements in NEMA ICS 61800-2.
 1. Test each VFC while connected to [its specified motor] [a motor that is comparable to that for which the VFC is rated].
 2. Verification of Performance: Rate VFCs according to operation of functions and features specified.

B. VFCs will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas, surfaces, and substrates to receive VFCs, with Installer present, for compliance with requirements for installation tolerances, and other conditions affecting performance.

B. Examine VFC before installation. Reject VFCs that are wet, moisture damaged, or mold damaged.

C. Examine roughing-in for conduit systems to verify actual locations of conduit connections before VFC installation.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 HARMONIC ANALYSIS STUDY

A. Perform a harmonic analysis study to identify the effects of nonlinear loads and their associated harmonic contributions on the voltages and currents throughout the electrical system. Analyze possible operating scenarios, including recommendations for VFC input filtering to limit TDD and THD(V) at each VFC to specified levels.

B. Prepare a harmonic analysis study and report complying with IEEE 399 and NETA Acceptance Testing Specification.

3.3 INSTALLATION

A. Coordinate layout and installation of VFCs with other construction including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
B. Contractor shall make all necessary field measurements to verify that equipment shall fit in allocated space in full compliance with minimum required clearances specified in local codes and standards.

C. Examine installation area to assure there is enough clearance to install equipment.

D. Verify that equipment is ready to install.

E. Verify that required utilities are available, in proper location and ready for use.

F. Beginning of installation means installer accepts conditions.

G. Floor-Mounting Controllers: Install VFCs on 4-inch (100-mm) nominal thickness concrete base.
 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around the full perimeter of concrete base.
 2. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 4. Install anchor bolts to elevations required for proper attachment to supported equipment.

H. Seismic Bracing: Comply with requirements specified in Section 260548 "Vibration and Seismic Controls for Electrical Systems."

I. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

J. Install fuses in each fusible-switch VFC.

K. Install fuses in control circuits if not factory installed. Comply with requirements in Section 262813 "Fuses."

L. Install, connect, and fuse thermal-protector monitoring relays furnished with motor-driven equipment.

M. Tighten bus-assembly joints with torque wrench or similar tool recommended by bus assembly manufacturer. Tighten joints again after bus assemblies have been energized for 30 days.

N. Connect bus assemblies and components to wiring system and to ground as indicated and instructed by manufacturer.

O. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those in specified standards.

P. Submit torque values for all connections with a torque schedule and witness signature.
Q. Comply with NECA 1.

3.4 IDENTIFICATION

A. Identify VFCs, components, and control wiring. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
2. Label each VFC with engraved nameplate.
3. Label each enclosure-mounted control and pilot device.

3.5 CONTROL WIRING INSTALLATION

A. Install wiring between VFCs and remote devices and facility's central-control system. Comply with requirements in Section 260523 "Control-Voltage Electrical Power Cables."

B. Bundle, train, and support wiring in enclosures.

C. Connect selector switches and other automatic control devices where applicable.

1. Connect selector switches to bypass only those manual- and automatic control devices that have no safety functions when switches are in manual-control position.
2. Connect selector switches with control circuit in both manual and automatic positions for safety-type control devices such as low- and high-pressure cutouts, high-temperature cutouts, and motor overload protectors.

3.6 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Acceptance Testing Preparation:

1. Test insulation resistance for each VFC element, bus, component, connecting supply, feeder, and control circuit.
2. Test continuity of each circuit.

D. Tests and Inspections:

1. Inspect VFC, wiring, components, connections, and equipment installation. Test
and adjust controllers, components, and equipment.

2. Test insulation resistance for each VFC element, component, connecting motor supply, feeder, and control circuits.

3. Test continuity of each circuit.

4. Verify that voltages at VFC locations are within 10 percent of motor nameplate rated voltages. If outside this range for any motor, notify DEN Project Manager before starting the motor(s).

5. Test each motor for proper phase rotation.

7. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

8. Perform the following infrared (thermographic) scan tests and inspections and prepare reports:

 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each VFC. Remove front panels so joints and connections are accessible to portable scanner.

 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each VFC 11 months after date of Substantial Completion.

 c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

9. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

E. VFCs will be considered defective if they do not pass tests and inspections.

F. Prepare test and inspection reports, including a certified report that identifies the VFC and describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations made after remedial action.

3.7 STARTUP SERVICE

A. Engage a factory-authorized service representative to assist Contractor in performing startup service.

1. Complete installation and startup checks according to manufacturer’s written instructions.

3.8 ADJUSTING

A. Program microprocessors for required operational sequences, status indications, alarms, event recording, and display features. Clear events memory after final acceptance testing and prior to Substantial Completion.
B. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and overload-relay pickup and trip ranges.

C. Adjust the trip settings of MCPs and thermal-magnetic circuit breakers with adjustable, instantaneous trip elements. Initially adjust to six times the motor nameplate full-load amperes and attempt to start motors several times, allowing for motor cool-down between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed eight times the motor full-load amperes (or 11 times for NEMA Premium Efficient motors if required). Where these maximum settings do not allow starting of a motor, notify DEN Project Manager before increasing settings.

D. Set field-adjustable circuit-breaker trip ranges.

E. Set field-adjustable pressure switches.

3.9 PROTECTION

A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions until controllers are ready to be energized and placed into service.

B. Replace VFCs whose interiors have been exposed to water or other liquids prior to Substantial Completion.

C. Provide final protection to ensure that moisture does not enter assembly.

3.10 CLEANING

A. After completing system installation, including outlet fittings and devices, inspect exposed finish. Remove burrs, dirt, and construction debris. Repair damaged finish to match original finish.

3.11 DEMONSTRATION

A. Engage a factory-authorized service representative to assist Contractor with training Owner's maintenance personnel to adjust, operate, reprogram, and maintain VFCs.

1. Train Owner's maintenance personnel on procedures and schedules for starting up and shutting down, troubleshooting, servicing, and maintaining equipment and schedules.

B. Schedule training with Owner, through DEN Project Manager, with at least seven (7) days advance notice.
3.12 COMMISSIONING

A. Infrared Scanning: Two months after Substantial Completion, perform an infrared scan of bus assembly including joints and plug-in units.

1. Use an infrared scanning device designed to measure temperature or detect significant deviations from normal values. Provide documentation of device calibration.

2. Perform two follow-up infrared scans of bus assembly, one at four months and the other at 11 months after Substantial Completion.

PART 4 - MEASUREMENT

4.1 METHOD OF MEASUREMENT

A. No separate measurement shall be made for work under this Section.

PART 5 - PAYMENT

5.1 PAYMENT

A. No separate payment will be made for work under this Section. The cost of the work described in this Section shall be included in the Lump Sum Contract price.

END OF SECTION 262923
SECTION 265100 - INTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. The contractor shall furnish and install all lighting equipment, lighting fixtures, brackets, hangers, lamps, raceway, cable, panels, and transformers as shown in fixture schedule, drawings and as required for all outlets indicated on the drawings.

B. Section Includes:
 1. Interior lighting fixtures, lamps, and ballasts.
 2. Emergency lighting units.
 3. Exit signs.
 4. Lighting fixture supports.

C. Related Sections:

1.3 DEFINITIONS

A. CCT: Correlated color temperature.

B. CRI: Color-rendering index.

C. HID: High-intensity discharge.

D. LED: Light Emitting Diode.

E. LER: Luminaire efficacy rating.

F. Lumen: Measured output of lamp and luminaire, or both.

G. Luminaire: Complete lighting fixture, including ballast housing if provided.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of lighting fixture, arranged in order of fixture designation.
Include data on features, accessories, finishes, and the following:

1. Physical description of lighting fixture including dimensions.
2. Emergency lighting units including battery and charger.
4. Life, output (lumens, CCT, and CRI), and energy-efficiency data for lamps.
5. Photometric data and adjustment factors based on laboratory tests, complying with IESNA Lighting Measurements Testing & Calculation Guides, of each lighting fixture type. The adjustment factors shall be for LEDs, drivers, and accessories identical to those indicated for the lighting fixture as applied in this Project.

 a. Manufacturer Certified Data: Photometric data shall be certified by a manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.

6. Illumination data with light fixture efficiency, table of zonal cavity coefficients of utilization, recommended maximum spacing-to-mounting ratio and candlepower distribution curves drawn to scale such that candlepower can be scaled at different angles (or provide candlepower data in tabular form at 10 degree increments).
7. Include data substantiating that materials comply with requirements.

B. Shop Drawings:

1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
2. Wiring Diagrams: For power, signal, and control wiring.
3. Light fixture shop drawings shall be in booklet form with a separate sheet for each fixture, assembled in "luminaire type" alphabetical or numerical order, with proposed fixture, lamp type, and accessories clearly indicated on each sheet. Details indicating compatibility with ceiling grid system are required.

C. Samples: One complete operating unit for each type of interior light fixture when requested by DEN Project Manager. Each Sample shall include the following:

1. LED light sources and drivers, installed.
2. Cords and plugs.
3. Pendant support system.

D. Installation instructions.

E. Substitutions:

1. Substitutions: Under provisions of Division 01. One sample of each proposed light fixture substitution unless the DEN Project Manager waives requirement.
2. Printed physical, electrical and photometric data clearly highlighted to show the differences between the proposed substitutions and the specified light fixture.
3. Photometric information in IES standard format on a disc and printed on 8½” x 11” pages.
4. Point to point lighting calculation for all typical spaces.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For lighting equipment and fixtures to include in emergency, operation, and maintenance manuals.
 1. Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes.

B. Torque Values: Submit torque values for all connections with a torque schedule and witness signature.

C. As-Built Plans: Submit complete as-built plans of all Work, including interface with other Work, in accordance with requirements as specified in Section 013300 "Submittal Procedures".

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. LED - fixture-mounted, emergency battery pack: One for every 20 emergency lighting unit.
 2. Globes and Guards: One for every 20 of each type and rating installed. Furnish at least one of each type.

1.7 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by manufacturers' laboratories that are accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products.

B. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910, complying with the IESNA Lighting Measurements Testing & Calculation Guides.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. Comply with NFPA 70.

E. Comply with the requirements of the reference standards noted herein, except where more stringent requirements are listed herein or otherwise required by the Contract Documents. All equipment furnished under this section shall carry a UL Listing.
F. FM Global Compliance: Lighting fixtures for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.

1.8 COORDINATION

A. Coordinate layout and installation of lighting fixtures and suspension system with other construction that penetrates ceilings or is supported by them, including HVAC equipment, fire-suppression system, and partition assemblies.

B. The drawings are diagrammatic and indicate the general arrangement of electrical work. Locations are approximate and shall be subject to minor modifications as dictated by field conditions and as directed by DEN Project Manager.

1.9 WARRANTY

A. Special Warranty for Emergency Lighting Batteries: Manufacturer's standard form in which manufacturer of battery-powered emergency lighting unit agrees to repair or replace components of rechargeable batteries that fail in materials or workmanship within specified warranty period.

1. Warranty Period for Emergency Lighting Unit Batteries: Minimum three (3) years from date of Substantial Completion. Full warranty shall apply for first year, and prorated warranty for the remaining two years.

2. Warranty Period for Emergency LED Driver and Self-Powered Exit Sign Batteries: Minimum Three (3) years from date of Substantial Completion. Full warranty shall apply for first year, and prorated warranty for the remaining two (2) years.

1.10 CONSTRUCTION WASTE MANAGEMENT

A. Construction waste shall be managed in accordance with provisions of Section 017419 "Construction Waste Management and Disposal". Documentation shall be submitted to satisfy the requirements of that Section.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Products: Subject to compliance with requirements, provide products indicated on drawings, or approved equal.

2.2 GENERAL REQUIREMENTS FOR LIGHTING FIXTURES AND COMPONENTS

A. General: Lighting fixtures are to be of the sizes, types and ratings required complete with, but not limited to, housings, energy-efficient LED light sources, lamp holders,
reflectors, and wiring. Fixtures are to be factory-assembled, with those components required for complete installation. Fixtures with concealed hinges and catches are to have metal parts grounded as a common unit and be constructed to dampen ballast generated noise. Equipment and materials shall bear the UL label.

B. Environmental Conditions: The equipment shall be designed and constructed to operate successfully at the rated values under the following environmental conditions:

1. Location: Indoors.
2. Altitude 5,500 feet (1677 m) above sea level.
3. Ambient temperature range minus 30 deg F (minus 35 deg C) to 120 deg F (49 deg C), for fixtures in unconditioned locations.

C. LED Fixtures: RoHS compliant. Comply with ANSI C78.377 and UL 8750.

D. Metal Parts: Free of burrs and sharp corners and edges.

E. Provide all ferrous metal surfaces with a protective finish having rust inhibiting properties. Painted finishes shall be a minimum of 1.5 mils thick and shall have a balance between hardness and bending properties suitable for the application. White finishes shall have 87% minimum reflectance.

F. Fixtures to be installed in a damp or wet location shall be constructed with proper gasketing and corrosion resistant materials and/or coatings, and have appropriate UL Listing label for wet locations. Construct steel fixture channels, end caps, interior barriers, reflectors, etc. of adequate gauge.

G. Sheet Metal Components: Steel unless otherwise indicated. Form and support to prevent warping and sagging.

H. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit re-lamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during re-lamping and when secured in operating position.

I. Factory-Applied Labels: Comply with UL 1598. Include recommended LED light sources and drivers. Labels shall be located where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.

1. Label shall include the following lamp and ballast characteristics:
 a. "USE ONLY" and include specific lamp type.
 b. Lamp diameter code (T-4, T-5, T-8, T-12, etc.), tube configuration (twin, quad, triple, etc.), base type, and nominal wattage for LED light sources and drivers.
 c. CCT and CRI for all luminaires.
2. Static Fixture: Air-supply slots are blanked off, and fixture appearance matches active units.

J. Color Rendering Index: All luminaires furnished as part of the project shall have a
minimum color rendering index (CRI) of 80.

2.3 EMERGENCY POWER UNIT

A. Internal Type: Self-contained, modular, battery unit, factory mounted within lighting fixture body and compatible with ballast. Comply with UL 924.

1. Emergency Connection: Operate LED luminaire continuously at an output of at least 1400 lumens each. Connect unswitched circuit to battery unit.

2. Test Push Button and Indicator Light: Visible and accessible without opening fixture or entering ceiling space.
 a. Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
 b. Indicator Light: LED indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.

5. Remote Test: Switch in hand-held remote device aimed in direction of tested unit initiates coded infrared signal. Signal reception by factory-installed infrared receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response.

6. Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.

2.4 DRIVERS FOR SOLID-STATE LAMPS

A. Description: Listed, electronic, RoHS compliant, meeting the requirements of ANSI C82.77 and UL 8750.

1. Dimming: Where required. Meet or exceed specified dimming percentage.

2. Temperature rating: Match or exceed environmental requirements.

3. Rated Life: 50,000 hours minimum.

2.5 EXIT SIGNS

A. General Requirements for Exit Signs: Comply with UL 924; for sign colors, visibility, luminance, and lettering size, comply with authorities having jurisdiction.

1. All exit signs shall have green illuminated lettering on a white background.

B. Internally Lighted Signs:
1. Lamps for AC Operation: LEDs, 50,000 hours minimum rated lamp life.
2. Self-Powered Exit Signs (Battery Type): Integral automatic charger in a self-contained power pack.
 a. Battery: Sealed, maintenance-free, nickel-cadmium type.
 b. Charger: Fully automatic, solid-state type with sealed transfer relay.
 c. Operation: Relay automatically energizes lamp from battery when circuit voltage drops to 80 percent of nominal voltage or below. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.
 d. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
 e. LED Indicator Light: Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
 f. Remote Test: Switch in hand-held remote device aimed in direction of tested unit initiates coded infrared signal. Signal reception by factory-installed infrared receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response.
 g. Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciatted by an integral audible alarm and a flashing red LED.

C. Self-Luminous Signs: Prohibited

2.6 EMERGENCY LIGHTING UNITS

A. The emergency lighting for the means of egress and exit areas shall be accomplished by the following system:
 1. Self-contained, unitized rechargeable battery-powered fixtures shall be connected to existing emergency power supply.

B. General Requirements for Emergency Lighting Units: Self-contained units complying with UL 924.
 1. Battery: Sealed, maintenance-free, lead-acid type.
 2. Charger: Fully automatic, solid-state type with sealed transfer relay.
 3. Operation: Relay automatically turns lamp on when power-supply circuit voltage drops to 80 percent of nominal voltage or below. Lamp automatically disconnects from battery when voltage approaches deep-discharge level. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.
 4. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
 5. LED Indicator Light: Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
 6. Wire Guard: Heavy-chrome-plated wire guard protects lamp heads or fixtures.
7. Integral Time-Delay Relay: Holds unit on for fixed interval of 15 minutes when power is restored after an outage.
8. Remote Test: Switch in hand-held remote device aimed in direction of tested unit initiates coded infrared signal. Signal reception by factory-installed infrared receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response.
9. Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.

2.7 SOLID-STATE LAMPS
 A. LED lamps: ANSI C78.377, listed and rated for the intended environmental conditions.
 B. Minimum CRI: 80.
 C. Correlated color temperature (CCT): 3500K.
 D. Minimum LED life: 60,000 hours at L70.

2.8 LIGHTING FIXTURE SUPPORT COMPONENTS
 A. All lighting fixture support components to comply with requirements for Seismic Zone 1.
 B. Comply with Section 260529 "Hangers and Supports for Electrical Systems" for channel- and angle-iron supports and nonmetallic channel and angle supports.
 C. Single-Stem Hangers: 1/2-inch (13-mm) steel tubing with swivel ball fittings and ceiling canopy. Finish same as fixture.
 D. Twin-Stem Hangers: Two, 1/2-inch (13-mm) steel tubes with single canopy designed to mount a single fixture. Finish same as fixture.
 E. Wires: ASTM A 641/A 641M, Class 3, soft temper, zinc-coated steel, 12 gage (2.68 mm).
 F. Wires for Humid Spaces: ASTM A 580/A 580M, Composition 302 or 304, annealed stainless steel, 12 gage (2.68 mm).
 G. Rod Hangers: 3/16-inch (5-mm) minimum diameter, cadmium-plated, threaded steel rod.
 H. Hook Hangers: Integrated assembly matched to fixture and line voltage and equipped with threaded attachment, cord, and locking-type plug.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Sequencing and scheduling: The interior lighting installation is to be sequenced and scheduled with other work to minimize possibility of interference with pipes, ductwork and conduit. Lighting fixtures shall be protected from damage and soiling during the remainder of construction period.

B. Power Outages: Any power outages necessary to install or test electrical systems and/or equipment shall be coordinated with Denver International Airport Maintenance/Engineering. A written shutdown request form shall be submitted to and approved by the DEN Project Manager two (2) weeks prior to the shutdown.

C. Lighting fixtures:
 1. Set level, plumb, and square with ceilings and walls unless otherwise indicated.
 2. Install lamps in each luminaire.
 3. Set luminaries true, free of light leaks, warps, dents, or other irregularities. Provide the length of stems as required for the luminaries to be level and in the same horizontal plane. Verify the type of all ceilings before bidding, and provide fixtures and mounting to suit. Mount all outlets at position and height to clear equipment, ductwork, piping, etc., in mechanical equipment rooms, storage rooms, etc. Securely fasten all recessed fixtures in suspended ceiling to the ceiling's framing member, as described below.
 4. Surface mounting fixtures containing ballasts shall be mounted with a minimum 1-1/2" spacer where mounted on a combustible material unless specifically approved for the application.
 5. Protect wiring with tape or tubing at all points where abrasion is likely to occur. Provide chase nipples where field wiring is through knockouts. Wiring in fluorescent fixtures shall be suitable for temperature conditions and in no case less than 90 degree C (194 degree F) rating.
 6. Connectors and terminals, including screws and bolts, are to be tightened in accordance with equipment manufacturer's published torque tightening values for equipment connectors. Where manufacturer's torquing requirements are not indicated, connectors and terminals are to comply with tightening torques in specified standards and the National Electrical Code. Submit a report of all torquing values with a torque schedule and witness signature to the DEN Project Manager.
 7. Surface mounted fixtures greater than 2 feet in length shall be supported at a point in addition to the outlet box fixture stud.
 8. Each single phase circuit feeding light fixtures with ballasts shall have a dedicated neutral.
 9. Light fixtures in storage areas and fixtures mounted below 8’ shall have a guard to protect the lamps.

D. Temporary Lighting: If it is necessary, and approved by DEN Project Manager, to use permanent luminaires for temporary lighting, install and energize the minimum number of luminaires necessary. When construction is sufficiently complete, remove the
temporary luminaires, disassemble, clean thoroughly, install new lamps, and reinstall.

E. Remote Mounting of Ballasts: Distance between the ballast and fixture shall not exceed that recommended by ballast manufacturer. Verify, with ballast manufacturers, maximum distance between ballast and luminaire.

F. Suspended Lighting Fixture Support:
 1. Pendants and Rods: Where longer than 48 inches (1200 mm), brace to limit swinging.
 3. Continuous Rows: Use tubing or stem for wiring at one point and tubing or rod for suspension for each unit length of fixture chassis, including one at each end.
 4. Do not use grid as support for pendant luminaires. Connect support wires or rods to building structure.

G. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.2 GROUNDING:

A. Equipment grounding connections are required for interior lighting fixtures. Connections are to comply with tightening torque values specified in UL standards to assure permanent and effective grounds. Submit a report of all torquing values with a torque schedule and witness signature to DEN Project Manager.

3.3 IDENTIFICATION

A. Install labels with panel and circuit numbers on concealed junction and outlet boxes. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL

A. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery and retransfer to normal.

B. Verify that self-luminous exit signs are installed according to their listing and the requirements in NFPA 101.

C. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

3.5 STARTUP SERVICE

A. Burn-in all lamps that require specific aging period to operate properly, prior to
occupancy by Owner.

3.6 DEMONSTRATION:

A. Upon completion of the installation of interior lighting fixtures, and after building circuitry has been energized, the interior lighting system and emergency lighting system shall be operated to demonstrate capability and compliance with requirements.

B. Schedule training with Owner, through DEN Project Manager, with at least seven (7) days advance notice.

3.7 ADJUSTING AND CLEANING:

A. Interior lighting fixtures are to be cleaned of dust, dirt, fingerprints, smudges, and construction debris upon completion of the installation.

B. Installed fixtures are to be protected from damage during the remainder of the construction period.

C.

PART 4 - MEASUREMENT

4.1 METHOD OF MEASUREMENT

A. No separate measurement shall be made for work under this Section.

PART 5 - PAYMENT

5.1 PAYMENT

A. No separate payment will be made for work under this Section. The cost of the work described in this Section shall be included in the Lump Sum Contract price.

END OF SECTION 265100
GENERAL DETAIL NOTES

1.mania draws are made to indicate temporary equipment for refrigerant transfer, this includes temporary refrigerant storage units, gauges, tanks, etc.

2. GENERAL NOTES

3. PIU (Plant Integration Unit)

NOT TO SCALE

OPTIONAL FUNNEL, SECURE TO GRADE

REMOVABLE RETURN BEND (CLOSED)

PAVEMENT PICTURE

CONCRETE FLOOR SLAB

COLLAR

FLOOR DRAIN DETAIL

NOT TO SCALE

NOTE:

A. DIMENSION EQUAL TO MAXIMUM FAN INLET PRESSURE (INCH WC) + 1" (MIN).

B. DIMENSION EQUAL TO +12" (MIN.)